版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在矩形ABCD中,AB=3,BC=5,點E為CB上一動點(不與點C重合),將△CDE沿DE所在直線折疊,點C的對應點C'恰好落在AE上,則CE的長是()A. B.1 C.2 D.2、如圖,點O為矩形ABCD的對稱中心,點E從點A出發(fā)沿AB向點B運動,移動到點B停止,延長EO交CD于點F,則四邊形AECF形狀的變化依次為()A.平行四邊形→正方形→平行四邊形→矩形B.平行四邊形→菱形→平行四邊形→矩形C.平行四邊形→正方形→菱形→矩形D.平行四邊形→菱形→正方形→矩形3、直角三角形的面積為,斜邊上的中線為,則這個三角形周長為(
)A. B.C. D.4、下列方程:①;②;③;④;⑤.是一元二次方程的是(
)A.①② B.①②④⑤ C.①③④ D.①④⑤5、如圖,在四邊形ABCD中,,且AD=DC,則下列說法:①四邊形ABCD是平行四邊形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,則四邊形ABCD的面積為24,其中正確的有(
)A.2個 B.3個 C.4個 D.5個6、已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有2個,黑球有個,若隨機地從袋子中摸出一個球,記錄下顏色后,放回袋子中并搖勻,經(jīng)過大量重復試驗發(fā)現(xiàn)摸出白球的頻率穩(wěn)定在0.4附近,則的值為(
)A.3 B.4 C.5 D.67、如圖1,點Q為菱形ABCD的邊BC上一點,將菱形ABCD沿直線AQ翻折,點B的對應點P落在BC的延長線上.已知動點M從點B出發(fā),在射線BC上以每秒1個單位長度運動.設點M運動的時間為x,△APM的面積為y.圖2為y關于x的函數(shù)圖象,則菱形ABCD的面積為(
)A.12 B.24 C.10 D.20二、多選題(3小題,每小題2分,共計6分)1、下列關于x的方程沒有實數(shù)根的是(
)A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=02、兩個關于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-23、關于的方程有兩個不相等的實數(shù)根,則下列結(jié)論一定正確的是(
)A., B.C. D.當時,第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,將邊長為4的正方形ABCD沿對角線AC剪開,再把△ABC沿著AD方向平移得到△A′B′C′,若兩個三角形重疊部分的面積為3,則它移動的距離AA′等于___;移動的距離AA′等于___時,兩個三角形重疊部分面積最大.2、一個正方形的面積為,則它的對角線長為________.3、關于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.4、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點P在邊AC上,以2cm/s的速度從點A向點C移動,點Q在邊CB上,以1cm/s的速度從點C向點B移動.點P、Q同時出發(fā),且當一點移動到終點時,另一點也隨之停止,連接PQ,當△PQC的面積為3cm2時,P、Q運動的時間是_____秒.5、關于的一元二次方程有一個根是,則的值是_______.6、若關于x的一元二次方程x2+mx+2n=0有一個根是2,則m+n=_____.7、邊長分別為a和2a的兩個正方形按如圖的樣式擺放,則圖中陰影部分的面積為_____.8、如圖,四邊形ABCD為菱形,,延長BC到E,在內(nèi)作射線CM,使得,過點D作,垂足為F.若,則對角線BD的長為______.9、準備在一塊長為30米,寬為24米的長方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路,(如圖所示)四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的4倍,若四條小路所占面積為80平方米,則小路的寬度為_____米.10、一個小球在如圖所示的方格地磚上任意滾動,并隨機停留在某塊地磚上.每塊地磚的大小、質(zhì)地完全相同,那么該小球停留在黑色區(qū)域的概率是___________.四、解答題(6小題,每小題10分,共計60分)1、已知關于的方程有實根.(1)求的取值范圍;(2)設方程的兩個根分別是,,且,試求的值.2、某商店如果將進價8元的商品按每件10元出售,那么每天可銷售200件,現(xiàn)采用提高售價,減少進貨量的方法增加利潤,如果這種商品的售價每漲1元,那么每天的進貨量就會減少20件,要想每天獲得640元的利潤,則每件商品的售價定為多少元最為合適?3、如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,連接PE,PB.(1)在AC上找一點P,使△BPE的周長最?。ㄗ鲌D說明);(2)求出△BPE周長的最小值.4、已知,是一元二次方程的兩個實數(shù)根.(1)求k的取值范圍;(2)是否存在實數(shù)k,使得等式成立?如果存在,請求出k的值,如果不存在,請說明理由.5、如圖,是的中線,,且,連接,.(1)求證:;(2)當滿足條件__________時,四邊形是矩形.6、發(fā)現(xiàn):四個連續(xù)的整數(shù)的積加上是一個整數(shù)的平方.驗證:(1)的結(jié)果是哪個數(shù)的平方?(2)設四個連續(xù)的整數(shù)分別為,試證明他們的積加上是一個整數(shù)的平方;延伸:(3)有三個連續(xù)的整數(shù),前兩個整數(shù)的平方和等于第三個數(shù)的平方,試求出這三個整數(shù)分別是多少.-參考答案-一、單選題1、B【解析】【分析】由矩形的性質(zhì)得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質(zhì)得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【詳解】解:∵四邊形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質(zhì)得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'==4,設CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故選:B.【考點】本題考查了翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等知識;熟練掌握翻折變換和矩形的性質(zhì),由勾股定理得出方程是解題的關鍵.2、B【解析】【分析】根據(jù)對稱中心的定義,根據(jù)矩形的性質(zhì),可得四邊形AECF形狀的變化情況.【詳解】解:觀察圖形可知,四邊形AECF形狀的變化依次為平行四邊形→菱形→平行四邊形→矩形.故選:B.【考點】考查了中心對稱,矩形的性質(zhì),平行四邊形的判定與性質(zhì),菱形的性質(zhì),根據(jù)EF與AC的位置關系即可求解.3、D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長,根據(jù)勾股定理、完全平方公式計算即可.【詳解】解:設直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個三角形周長為:,故選D.【考點】本題考查的是勾股定理的應用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.4、D【解析】【分析】根據(jù)一元二次方程的定義進行判斷.【詳解】①該方程符合一元二次方程的定義;②該方程中含有2個未知數(shù),不是一元二次方程;③該方程含有分式,它不是一元二次方程;④該方程符合一元二次方程的定義;⑤該方程符合一元二次方程的定義.綜上,①④⑤一元二次方程.故選:D.【考點】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2.5、D【解析】【分析】由,可知四邊形ABCD是平行四邊形,可判斷①的正誤;由AD=DC,可知平行四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可判斷②③④⑤的正誤.【詳解】解:∵,∴四邊形ABCD是平行四邊形,故①正確;∵AD=DC,∴平行四邊形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正確;∵AC=6,BD=8,∴菱形ABCD的面積=,故⑤正確;∴正確的個數(shù)有5個,故選D.【考點】本題考查了平行四邊形的判定,菱形的判定與性質(zhì).解題的關鍵在于證明四邊形ABCD是菱形.6、A【解析】【分析】根據(jù)題意可得,然后進行求解即可.【詳解】解:由題意得:,解得:,經(jīng)檢驗是原方程的解;故選A.【考點】本題主要考查分式方程的解法及概率,熟練掌握分式方程的解法及概率是解題的關鍵.7、D【解析】【分析】由圖2,可知BP=6,S△ABP=12,由圖1翻折可知,AQ⊥BP,進而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面積為BC×AQ即可求出.【詳解】解:由圖2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面積為BC×AQ=5×4=20故選:D【考點】本題是一道幾何變換綜合題,解決本題主要用到勾股定理,翻折的性質(zhì),根據(jù)函數(shù)圖象找出幾何圖形中的對應關系是解決本題的關鍵.二、多選題1、ABD【解析】【分析】將選項中的式子轉(zhuǎn)換為一元二次方程一般式,根據(jù)根的判別式可得結(jié)果.【詳解】解:A、x2-x+1=0,,方程沒有實數(shù)根,此選項符合題意;B、x2+x+1=0,,方程沒有實數(shù)根,此選項符合題意;C、(x-1)(x+2)=0,,方程有實數(shù)根,此選項不符合題意;D、原式整理為:,,方程沒有實數(shù)根,此選項符合題意;故選:ABD.【考點】本題考查了根的判別式:一元二次方程的根與有如下關系:當時,方程有兩個不相等的實數(shù)根;當時,方程有兩個相等的實數(shù)根;當時,方程無實數(shù)根.2、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當x=時,,∴是方程的根.故選:A,D.【考點】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關鍵.3、BCD【解析】【分析】根據(jù)已知條件可知只有當時,選項A才成立;將原式整理為一元二次方程的一般式,根據(jù)關于的方程有兩個不相等的實數(shù)根運用根的判別式可判斷B選項;運用根于系數(shù)的關系可判斷選項C;運用求根公式可判斷選項D.【詳解】解:整理為,A、當時,的解為,,故選項A不符合題意;B、∵關于的方程有兩個不相等的實數(shù)根,∴,即,解得:;故選項B符合題意;C、根據(jù)根于系數(shù)的關系可得:,∴,選項C符合題意;D、當時,,,∴當時,,故選項D符合題意;故選:BCD.【考點】本題主要考查一元二次方程根的判別式,根與系數(shù)的關系,一元二次方程的解等知識點,熟知根的判別式以及根與系數(shù)的關系是解題的關鍵.三、填空題1、
1cm或3cm##3cm或1cm
2cm【解析】【分析】如圖,設交于交于證明四邊形是平行四邊形,證明是等腰直角三角形,也是等腰直角三角形,設cm,則再利用面積公式建立方程,解方程即可,同時利用配方法求解面積最大值時的平移距離.【詳解】解:如圖,設交于交于由平移的性質(zhì)可得:四邊形是平行四邊形,由正方形可得:是等腰直角三角形,同理:也是等腰直角三角形,設cm,則解得:cm或cm重疊部分的面積為:當時,重疊部分的面積最大,最大面積為4cm2所以當cm時,重疊部分的面積最大.故答案為:1cm或3cm;2cm【考點】本題考查的是正方形的性質(zhì),平行四邊形的判定,等腰直角三角形的判定與性質(zhì),一元二次方程的解法,配方法的應用,平移的性質(zhì),熟悉以上基礎知識是解題的關鍵.2、【解析】【分析】根據(jù)正方形的面積求得正方形的邊長,再由勾股定理求得正方形的對角線長即可.【詳解】∵正方形的面積為,∴正方形的邊長為9cm,∴正方形對角線的長為.故答案為.【考點】本題考查了正方形的性質(zhì),熟知正方形的性質(zhì)是解決問題的關鍵.3、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.4、1【解析】【分析】設P、Q運動的時間是秒,根據(jù)已知條件得到cm,cm,則cm,根據(jù)三角形面積公式列出方程,解方程即可求解.【詳解】解:設P、Q運動的時間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當△PQC的面積為3cm2時,P、Q運動的時間是1秒.故答案為:1【考點】本題考查了一元二次方程應用——動點問題,三角形的面積,正確的理解題意是解題的關鍵.5、1【解析】【分析】把方程的根代入原方程得到,解得k的值,再根據(jù)一元二次方程成立滿足的條件進行取舍即可.【詳解】∵方程是一元二次方程,∴k+2≠0,即k≠-2;又0是該方程的一個根,∴,解得,,,由于k≠-2,所以,k=1.故答案為:1.【考點】本題考查了一元二次方程的解.解此類題時,要擅于觀察已知的是哪些條件,從而有針對性的選擇解題方法.同時要注意一元二次方程成立必須滿足的條件,這是容易忽略的地方.6、﹣2【解析】【分析】根據(jù)一元二次方程的解的定義把x=2代入得到得然后利用整體代入的方法進行計算.【詳解】∵2是關于x的一元二次方程的一個根,∴,∴n+m=?2,故答案為?2.【考點】本題考查了一元二次方程的解,掌握方程的解的定義是解決本題的關鍵.7、2a2【解析】【分析】結(jié)合圖形,發(fā)現(xiàn):陰影部分的面積=大正方形的面積的+小正方形的面積﹣直角三角形的面積.【詳解】解:陰影部分的面積=大正方形的面積+小正方形的面積﹣直角三角形的面積=(2a)2+a2﹣?2a?3a=4a2+a2﹣3a2=2a2.故答案為:2a2.【考點】本題考查正方形中不規(guī)則圖形面積的求法,解題的關鍵是利用正方形的性質(zhì),通過規(guī)則圖形進行求解.8、【解析】【分析】連接AC交BD于H,證明DCH≌DCF,得出DH的長度,再根據(jù)菱形的性質(zhì)得出BD的長度.【詳解】解:如圖,連接AC交BD于點H,由菱形的性質(zhì)得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四邊形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案為.【考點】本題主要考查菱形的性質(zhì)和全等三角形的判定,菱形的對角線互相平分是此題的關鍵知識點,得出∠HDC=∠FDC是這個題最關鍵的一點.9、1.25【解析】【分析】設小路的寬度為,根據(jù)圖形所示,用表示出小路的面積,由小路面積為80平方米,求出未知數(shù).【詳解】設小路的寬度為,由題意和圖示可知,小路的面積為,解一元二次方程,由,可得.【考點】本題綜合考查一元二次方程的列法和求解,這類實際應用的題目,關鍵是要結(jié)合題意和圖示,列對方程.10、【解析】【分析】先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結(jié)論.【詳解】解:∵由圖可知,黑色方磚6塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值=,∴小球停在黑色區(qū)域的概率是;故答案為:【考點】本題考查的是幾何概率,用到的知識點為:幾何概率=相應的面積與總面積之比.四、解答題1、(1);(2)不存在【解析】【分析】(1)根據(jù)根的判別式即可求出答案.(2)根據(jù)根與系數(shù)的關系即可求出答案.【詳解】解:(1)∵,,,∴,∴;(2)由題意可知:x1+x2=2,x1x2=,∵,∴,∴k=,∵,∴k=不符合題意,舍去,∴k的值不存在.【考點】本題考查了一元二次方程根的判別式,解題的關鍵是熟練運用根與系數(shù)的關系以及根的判別式,本題屬于基礎題型.2、每件商品的售價定為16元最為合適.【解析】【分析】設每件商品的售價定為x元,則每件商品的銷售利潤為(x-8)元,每天的進貨量為200-20(x-10)=(400-20x)件,利用每天銷售這種商品的利潤=每件的銷售利潤×日銷售量(日進貨量),即可得出關于x的一元二次方程,解之即可得出x的值,再結(jié)合“現(xiàn)采用提高售價,減少進貨量的方法增加利潤”,即可得出每件商品的售價定為16元最為合適..【詳解】解:設每件商品的售價定為x元,則每件商品的銷售利潤為(x-8)元,每天的進貨量為200-20(x-10)=(400-20x)件,依題意得:(x-8)(400-20x)=640,整理得:x2-28x+192=0,解得:x1=12,x2=16.又∵現(xiàn)采用提高售價,減少進貨量的方法增加利潤,∴x=16.答:每件商品的售價定為16元最為合適.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.3、(1)見解析(2)12【解析】【分析】(1)連接DE,交AC于點P′,連接BP′,當點P在點P′處時,△BPE的周長最?。碛桑鹤C明△ABP′≌△ADP′,即可求解;(2)根據(jù)(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.從而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如圖,連接DE,交AC于點P′,連接BP′,當點P在點P′處時,△BPE的周長最?。碛桑涸谡叫蜛BCD中,AB=AD,∠BAC=∠DAC,∵AP′=AP′,∴△ABP′≌△ADP′,∴BP′=DP′,∴BP+PE=DP′+P′E≥DE,即當點P位于PP′時,△BPE的周長PB+EP+BE最?。?2)解:由(1)得:BP′=DP′,∴P′B+P′E=DE.∵BE=2,AE=3BE,∴AE=6.∴AD=AB=8.∴DE==10.∴PB+PE的最小值是10.∴△BPE周長的最小值為10+BE=10+2=12.【考點】本題主要考查了正方形的性質(zhì),勾股定理,最短距離,全等三角形的判定和性質(zhì)等,熟練掌握相關知識點是解題的關鍵.4、(1);(2)【解析】【分析】(1)根據(jù)方程的系數(shù)結(jié)合≥0,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍;(2)根據(jù)根與系數(shù)的關系可得出x1+x2=2,x1x2=k+2,結(jié)合,即可得出關于k的方程,解之即可得出k值,再結(jié)合(1)即可得出結(jié)論.【詳解】解:(1)∵一元二次方程有兩個實數(shù)根,∴解得;(2)由一元二次方程根與系數(shù)關系,∵,∴即,解得.又由(1)知:,∴.【考點】本題考查了根與系數(shù)的關系以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江西師范大學圖書館非事業(yè)編制聘用人員招聘1人備考題庫及完整答案詳解一套
- 2026年1月廣東廣州市天河區(qū)瑜翠園幼兒園編外聘用制專任教師招聘1人備考題庫參考答案詳解
- 2026廣西崇左憑祥市看守所公益性崗位工作人員招聘備考題庫及完整答案詳解1套
- 2025云南省電子競技協(xié)會招聘備考題庫及完整答案詳解
- 2025烏魯木齊市第十三中棟梁校區(qū)招聘備考題庫及答案詳解參考
- 2025年鐵嶺市事業(yè)單位公開招聘動物檢疫崗位工作人員77人備考題庫及1套完整答案詳解
- 2026中國大地財產(chǎn)保險股份有限公司錫林郭勒中心支公司招聘2人備考題庫(內(nèi)蒙古)及答案詳解(考點梳理)
- 2026年六安一中公開招聘2026屆應屆公費師范畢業(yè)生備考題庫及完整答案詳解
- 2026江西南昌市勞動保障事務代理中心以勞務外包形式招聘項目申報與監(jiān)測服務工作人員1人備考題庫及1套參考答案詳解
- 2026廣西北海市海城區(qū)市場監(jiān)督管理局招聘協(xié)管員的2人備考題庫及答案詳解一套
- 貴州省貴陽市(2024年-2025年小學五年級語文)部編版期末考試((上下)學期)試卷及答案
- 正規(guī)裝卸合同范本
- 自動控制原理仿真實驗課程智慧樹知到答案2024年山東大學
- JBT 7946.2-2017 鑄造鋁合金金相 第2部分:鑄造鋁硅合金過燒
- 流程與TOC改善案例
- 【當代中國婚禮空間設計研究4200字(論文)】
- GB/T 20322-2023石油及天然氣工業(yè)往復壓縮機
- 提撈采油安全操作規(guī)程
- DB3211-T 1048-2022 嬰幼兒日間照料托育機構服務規(guī)范
- YY/T 1846-2022內(nèi)窺鏡手術器械重復性使用腹部沖吸器
- GB/T 15390-2005工程用焊接結(jié)構彎板鏈、附件和鏈輪
評論
0/150
提交評論