版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,從袋子中隨機摸出一個球,這個球是白球的概率是()A. B. C. D.2、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.3、小張同學(xué)去展覽館看展覽,該展覽館有A、B兩個驗票口(可進可出),另外還有C、D兩個出口(只出不進).則小張從不同的出入口進出的概率是()A. B. C. D.4、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm5、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°6、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.7、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°8、擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)大于2且小于5的概率是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,PA,PB是的切線,切點分別為A,B.若,,則AB的長為______.2、半徑為6cm的扇形的圓心角所對的弧長為cm,這個圓心角______度.3、第24屆世界冬季奧林匹克運動會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內(nèi)隨機投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點都是等可能的),經(jīng)過大量重復(fù)投擲試驗,發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計宣傳畫上北京冬奧會會徽圖案的面積約為______.4、如圖AB為⊙O的直徑,點P為AB延長線上的點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.5、現(xiàn)有A、B兩個不透明的袋子,各裝有三個小球,A袋中的三個小球上分別標記數(shù)字1,2,3;B袋中的三個小球上分別標記數(shù)字2,3,4.這六個小球除標記的數(shù)字外,其余完全相同.將A、B兩個袋子中的小球搖勻,然后從A、B袋中各隨機摸出一個小球,則摸出的這兩個小球標記的數(shù)字之和為5的概率為______.6、把一個正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.7、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點A按逆時針方向旋轉(zhuǎn)90°后得到△AB′C′.則圖中陰影部分的面積為_____.三、解答題(7小題,每小題0分,共計0分)1、如圖所示,是⊙的一條弦,,垂足為,交⊙于點,點在⊙上.()若,求的度數(shù).()若,,求的長.2、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當BF+CE最小時,直接出的值.3、如圖,在中,,,將繞著點A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.4、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點E,并與AM,BN分別相交于D,C兩點.設(shè),,求y關(guān)于x的函數(shù)解析式.5、某省高考采用“3+1+2”模式:“3”是指語文、數(shù)學(xué)、英語3科為必選科目,“1”是指在物理、歷史2科中任選1科,“2”是指在思想政治、化學(xué)、生物、地理4科中任選2科.(1)假定在“1”中選擇歷史,在“2”中已選擇地理,則選擇生物的概率是________;(2)求同時選擇物理、化學(xué)、生物的概率.6、小宇和小偉玩“石頭、剪刀、布”的游戲.這個游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢相同不分勝負.如果二人同時隨機出手(分別出三種手勢中的一種手勢)一次,那么小宇獲勝的概率是多少?7、在同樣的條件下對某種小麥種子進行發(fā)芽試驗,統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.實驗種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計約需麥種多少千克(精確到1kg)?-參考答案-一、單選題1、D【分析】根據(jù)隨機事件概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進行計算即可.【詳解】解:∵一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,∴抽到每個球的可能性相同,∴布袋中任意摸出1個球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點睛】本題考查了隨機事件概率的求法,熟練掌握隨機事件概率公式是解題關(guān)鍵.2、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.3、D【分析】先畫樹狀圖得到所有的等可能性的結(jié)果數(shù),然后找到小張從不同的出入口進出的結(jié)果數(shù),最后根據(jù)概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結(jié)果數(shù),其中小張從不同的出入口進出的結(jié)果數(shù)有6種,∴P小張從不同的出入口進出的結(jié)果數(shù),故選D.【點睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關(guān)鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.4、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.5、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.6、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關(guān)鍵.7、B【分析】由同弧所對的圓周角是圓心角的一半可得,利用平行線的性質(zhì):兩直線平行,內(nèi)錯角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點睛】題目主要考查圓周角定理,平行線的性質(zhì)等,理解題意,找出相關(guān)的角度是解題關(guān)鍵.8、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點數(shù)可能是3或4,利用概率公式計算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個面,點數(shù)分別為1,2,3,4,5,6,∴點數(shù)大于2且小于5的有3或4,∴向上一面的點數(shù)大于2且小于5的概率是=,故選:C.【點睛】此題考查了求簡單事件的概率,正確掌握概率的計算公式是解題的關(guān)鍵.二、填空題1、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點睛】本題考查了等邊三角形的判定和切線長定理,解題的關(guān)鍵是作出相應(yīng)輔助線.2、60【分析】根據(jù)弧長公式求解即可.【詳解】解:,解得,,故答案為:60.【點睛】本題考查了弧長公式,靈活應(yīng)用弧長公式是解題的關(guān)鍵.3、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點睛】題目主要考查根據(jù)頻率計算滿足條件的情況,理解題意,熟練掌握頻率的計算方法是解題關(guān)鍵.4、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.5、【分析】先列表,再利用表格信息得到所有的等可能的結(jié)果數(shù)與符合條件的結(jié)果數(shù),再利用概率公式進行計算即可.【詳解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的結(jié)果數(shù)有9種,而和為5的結(jié)果數(shù)有3種,摸出的這兩個小球標記的數(shù)字之和為5的概率為:故答案為:【點睛】本題考查的是利用列表法或畫樹狀圖的方法求解簡單隨機事件的概率,掌握“列表或畫樹狀圖的方法”是解本題的關(guān)鍵.6、60【分析】正六邊形連接各個頂點和中心,這些連線會將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點睛】本題考查中心對稱圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.7、【分析】利用勾股定理求出AC及AB的長,根據(jù)陰影面積等于求出答案.【詳解】解:由旋轉(zhuǎn)得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質(zhì)、扇形面積計算公式及分析出陰影面積的構(gòu)成特點是解題的關(guān)鍵.三、解答題1、(1)26°;(2)8【分析】(1)欲求,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解;(2)利用垂徑定理可以得到,從而得到結(jié)論.【詳解】解:(1),,.(2)∵,,且,∴,∵,,.【點睛】此題考查了圓周角定理,同圓中等弧所對的圓周角相等,以及垂徑定理,熟練掌握垂徑定理得出是解題關(guān)鍵.2、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點共線,∴BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點共線,∴BF+CE=BF+FC′≥BC′,∴點F在BC′上時,BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點共圓,同弧所對圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問題,角平分線性質(zhì),分類討論思想,本題難度大,應(yīng)用知識多,是中考壓軸題,利用輔助線作出正確圖形是解題關(guān)鍵.3、(1)45°;(2)【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,,通過等量代換及三角形內(nèi)角和得,根據(jù)四點共圓即可求得;(2)連接EB,先證明出,根據(jù)全等三角形的性質(zhì)得,在中利用勾股定理,即可求得.【詳解】解:(1)由旋轉(zhuǎn)可知:,,,,∴,,.由三角形內(nèi)角和定理得,∴點A,D,F(xiàn),E共圓.∴.(2)連接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、三角形全等判定及性質(zhì)、勾股定理、三角形內(nèi)角和等,解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì).4、【分析】連接OC,OD,OE,根據(jù)切線的性質(zhì)得到cm,,,推出,,根據(jù),列得,從而求出函數(shù)解析式.【詳解】解:連接OC,OD,OE,∵AD切于點A,CB切于點B,CD切于點E,直徑cm∴cm,,,∴,,∵,∴∴..【點睛】此題考查了圓的切線的性質(zhì)定理,全等三角形的判定及性質(zhì)定理,求函數(shù)解析式,正確連線利用切線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年山東大學(xué)齊魯?shù)诙t(yī)院護理人員(非事業(yè)編制)招聘(60人)筆試備考題庫及答案解析
- 2026上半年貴州事業(yè)單位聯(lián)考貴州省民政廳招聘10人考試備考題庫及答案解析
- 2026年度霍邱縣事業(yè)單位公開招聘工作人員44名筆試模擬試題及答案解析
- 2026年安徽汽車職業(yè)技術(shù)學(xué)院招聘派遣制任務(wù)型教師30名(第一批)筆試參考題庫及答案解析
- 2026湖北恩施州順鑫達勞務(wù)有限責(zé)任公司短期招聘2人筆試參考題庫及答案解析
- 2026年薪酬體系設(shè)計優(yōu)化培訓(xùn)
- 2026江西裕民銀行誠聘英才筆試備考試題及答案解析
- 北京十一晉元中學(xué)招聘筆試備考題庫及答案解析
- 2026年投資房地產(chǎn)的地理經(jīng)濟分析
- 2026年房地產(chǎn)開發(fā)成本與政策調(diào)控的關(guān)聯(lián)性
- DB34-T 4877-2024 智慧檢驗檢測實驗室建設(shè)指南
- 體溫單模板完整版本
- 武漢市2024屆高中畢業(yè)生二月調(diào)研考試(二調(diào))英語試卷(含答案)
- 天然美肌無添加的護膚品
- 《正常人體形態(tài)學(xué)》考試復(fù)習(xí)題庫大全(含答案)
- 湖南省長沙市外國語學(xué)校 2021-2022學(xué)年高一數(shù)學(xué)文模擬試卷含解析
- 3D車載蓋板玻璃項目商業(yè)計劃書
- 阿米巴經(jīng)營管理培訓(xùn)課件
- 我國的宗教政策-(共38張)專題培訓(xùn)課件
- 鋁材廠煲模作業(yè)指導(dǎo)書
- 【行測題庫】圖形推理題庫
評論
0/150
提交評論