版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長為()A.3 B. C. D.2、如圖,DC是⊙O的直徑,弦AB⊥CD于M,則下列結(jié)論不一定成立的是()A.AM=BM B.CM=DM C. D.3、往直徑為78cm的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm4、在平面直角坐標(biāo)系中,已知點與點關(guān)于原點對稱,則的值為()A.4 B.-4 C.-2 D.25、如圖,A,B,C是正方形網(wǎng)格中的三個格點,則是()A.優(yōu)弧 B.劣弧 C.半圓 D.無法判斷6、一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,從袋子中隨機摸出一個球,這個球是白球的概率是()A. B. C. D.7、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個8、下列汽車標(biāo)志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在平面直角坐標(biāo)系中,點關(guān)于原點對稱的點的坐標(biāo)是______.2、如圖,將矩形繞點A順時針旋轉(zhuǎn)到矩形的位置,旋轉(zhuǎn)角為.若,則的大小為________(度).3、AB是的直徑,點C在上,,點P在線段OB上運動.設(shè),則x的取值范圍是________.4、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關(guān)系是______.5、一個直角三角形的斜邊長cm,兩條直角邊長的和是6cm,則這個直角三角形外接圓的半徑為______cm,直角三角形的面積是________.6、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.7、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.三、解答題(7小題,每小題0分,共計0分)1、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個問題:如圖1,在平面直角坐標(biāo)系xOy中,OA經(jīng)過坐標(biāo)原點O,并與兩坐標(biāo)軸分別交于B、C兩點,點B的坐標(biāo)為,點D在上,且,求OA的半徑和圓心A的坐標(biāo).元元的做法如下,請你幫忙補全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標(biāo)為(④)的半徑為⑤2、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.3、正方形綠化場地擬種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對稱或中心對稱圖案,下面是三種不同設(shè)計方案中的一部分.(1)請把圖①、圖②補成既是軸對稱圖形,又是中心對稱圖形,并畫出一條對稱軸;(2)把圖③補成只是中心對稱圖形,并把中心標(biāo)上字母P.4、如圖,是由一些大小相同的小正方體組合成的簡單幾同體,請在下面方格紙中分別畫出從它的左面和上面看到的形狀圖.5、某省高考采用“3+1+2”模式:“3”是指語文、數(shù)學(xué)、英語3科為必選科目,“1”是指在物理、歷史2科中任選1科,“2”是指在思想政治、化學(xué)、生物、地理4科中任選2科.(1)假定在“1”中選擇歷史,在“2”中已選擇地理,則選擇生物的概率是________;(2)求同時選擇物理、化學(xué)、生物的概率.6、如圖,AB是的直徑,CD是的一條弦,且于點E.(1)求證:;(2)若,,求的半徑.7、將銳角為45°的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉(zhuǎn),∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點E、F,連接EF.(1)在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的兩邊分別與正方形的邊CB、DC相交時,如圖1所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(2)在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時,如圖2所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(3)若正方形的邊長為4,在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的一邊恰好經(jīng)過BC邊的中點時,試求線段EF的長.-參考答案-一、單選題1、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點睛】本題考查了圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì),掌握圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì)是解題的關(guān)鍵.2、B【分析】根據(jù)垂徑定理“垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧”進行判斷即可得.【詳解】解:∵弦AB⊥CD,CD過圓心O,∴AM=BM,,,即選項A、C、D選項說法正確,不符合題意,當(dāng)根據(jù)已知條件得CM和DM不一定相等,故選B.【點睛】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理.3、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.4、C【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點:兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反即可得到答案.【詳解】解:點與點關(guān)于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標(biāo)特點,解題的關(guān)鍵是掌握點的變化規(guī)律.5、B【分析】根據(jù)三點確定一個圓,圓心的確定方法:任意兩點中垂線的交點為圓心即可判斷.【詳解】解;如圖,分別連接AB、AC、BC,取任意兩條線段的中垂線相交,交點就是圓心.故選:B.【點睛】本題考查已知圓上三點求圓心,取任意兩條線段中垂線交點確定圓心是解題關(guān)鍵.6、D【分析】根據(jù)隨機事件概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進行計算即可.【詳解】解:∵一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,∴抽到每個球的可能性相同,∴布袋中任意摸出1個球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點睛】本題考查了隨機事件概率的求法,熟練掌握隨機事件概率公式是解題關(guān)鍵.7、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.8、C【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:C.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題1、(3,4)【分析】關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).【詳解】:由題意,得點(-3,-4)關(guān)于原點對稱的點的坐標(biāo)是(3,4),故答案為:(3,4).【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).2、20【分析】先利用旋轉(zhuǎn)的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計算出∠BAD‘=70°,然后利用互余計算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.3、【分析】分別求出當(dāng)點P與點O重合時,當(dāng)點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當(dāng)點P與點O重合時,∵OA=OC,∴,即;當(dāng)點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質(zhì),直徑所對的圓周角是直角的性質(zhì),正確理解點P的運動位置是解題的關(guān)鍵.4、相切或相交【詳解】首先求出方程的根,再利用半徑長度,由點O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當(dāng)半徑為2時,直線l與圓O的的位置關(guān)系是相切,當(dāng)半徑為3時,直線l與圓O的的位置關(guān)系是相交,綜上所述,直線l與圓O的的位置關(guān)系是相切或相交.故答案為:相切或相交.【點睛】本題考查的是直線與圓的位置關(guān)系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關(guān)系完成判定.5、4【分析】設(shè)一直角邊長為x,另一直角邊長為(6-x)根據(jù)勾股定理,解一元二次方程求出,根據(jù)這個直角三角形的斜邊長為外接圓的直徑,可求外接圓的半徑為cm,利用三角形面積公式求即可.【詳解】解:設(shè)一直角邊長為x,另一直角邊長為(6-x),∵三角形是直角三角形,∴根據(jù)勾股定理,整理得:,解得,這個直角三角形的斜邊長為外接圓的直徑,∴外接圓的半徑為cm,三角形面積為.故答案為;.【點睛】本題考查直角三角形的外接圓,直角所對弦性質(zhì),勾股定理,一元二次方程,三角形面積,掌握以上知識是解題關(guān)鍵.6、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.7、12【分析】如圖,連接BC,AO,作點P關(guān)于AB的對稱點M,作點P關(guān)于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關(guān)于AB的對稱點M,作點P關(guān)于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當(dāng)MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當(dāng)PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當(dāng)點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.三、解答題1、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據(jù)垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據(jù)是垂徑定理)∵,∴(依據(jù)是圓周角定理).∵,.∴BC是的直徑(依據(jù)是圓周角定理).∴,∵,∴A的坐標(biāo)為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,圓周角定理,(1,),2.【點睛】此題考查了圓的知識,垂徑定理、圓周角定理,熟記各定理知識并綜合應(yīng)用是解題的關(guān)鍵.2、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識點是解題的關(guān)鍵.3、(1)見解析(2)見解析【分析】(1)根據(jù)軸對稱圖形,中心對稱圖形的性質(zhì)畫出圖形即可.(2)根據(jù)中心對稱圖形的定義畫出圖形即可.(1)解:圖形如圖①②所示.(2)解:圖形如圖③所示,點P即為所求作.【點睛】本題考查利用旋轉(zhuǎn)變換設(shè)計圖案,正方形的性質(zhì),軸對稱圖形,中心對稱圖形等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題.4、圖見解析.【分析】根據(jù)左視圖和俯視圖的畫法即可得.【詳解】解:畫圖如下:【點睛】本題考查了左視圖和俯視圖,熟練掌握左視圖(是指從左面觀察物體所得到的圖形)和俯視圖(是指從上面觀察物體所得到的圖形)的畫法是解題關(guān)鍵.5、(1)(2)【分析】(1)直接根據(jù)概率公式即可得出答案;(2)根據(jù)題意畫出樹狀圖得出所有等可能的情況數(shù),找出符合條件的情況數(shù),然后根據(jù)概率公式即可得出答案.(1)解:在“2”中已選擇了地理,從剩下的化學(xué)、生物,思想品德三科中選一科,因此選擇生物的概率為.故答案為:;(2)解:用樹狀圖表示所有可能出現(xiàn)的結(jié)果如下:共有12種等可能的結(jié)果數(shù),其中選中“化學(xué)”“生物”的有2種,則.在“1”中選擇物理的概率,同時選擇物理、化學(xué)、生物的概率.故答案為:.【點睛】本題考查的是用列表法或樹狀圖法求概率,解題的關(guān)鍵是掌握列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.6、(1)見解析;(2)3【分析】(1)根據(jù)∠D=∠B,∠BCO=∠B,代換證明;(2)根據(jù)垂徑定理,得CE=,,利用勾股定理計算即可.【詳解】(1)證明:∵OC=OB,∴∠BCO=∠B;∵,∴∠B=∠D;∴∠BCO=∠D;(2)解:∵AB是⊙O的直徑,且CD⊥AB于點E,∴CE=CD,∵CD=,∴CE=,在Rt△OCE中,,∵OE=1,∴,∴;∴⊙O的半徑為3.【點睛】本題考查了圓周角定理,垂徑定理,勾股定理,結(jié)合圖形,熟練運用三個定理是解題的關(guān)鍵.7、(1)EF=DF+BE;(2)EF=DF-BE;(3)線段EF的長為或.【分析】(1)延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF即可;(2)在DC上截取DH=BE,連接AH,先證△ADH≌△ABE,再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 續(xù)聘會議合同范本
- 代購合同協(xié)議書
- 修改工程協(xié)議書
- 電子廠里的協(xié)議書
- 借殼收購協(xié)議書
- 差價返利合同范本
- 繪畫裝裱合同范本
- 全面金融協(xié)議書
- 代購服務(wù)協(xié)議書
- 租賃戰(zhàn)略合同協(xié)議
- 第十八屆“地球小博士”全國地理知識科普競賽題庫(附答案)
- 《脊髓栓系綜合征》課件
- 【MOOC】《線性代數(shù)與空間解析幾何(二)》電子科技大學(xué)-中國大學(xué)慕課MOOC答案
- 大數(shù)據(jù)與城市規(guī)劃習(xí)題及答案
- 北京市石景山區(qū)2020-2021學(xué)年三年級下學(xué)期期末考試語文試卷
- 2016大型年會晚會籌備工作分工推進計劃表(專業(yè)詳細完整版)
- 商業(yè)合作計劃書怎么寫
- 《MATLAB編程及應(yīng)用》全套教學(xué)課件
- GA 2113-2023警服女禮服
- 坐標(biāo)正算講解
- 銀行開門紅表態(tài)發(fā)言三分鐘范文三篇
評論
0/150
提交評論