2024年全球人工智能趨勢(shì)報(bào)告 2024 Global AI Trends Report 2024 Global Trends in Al_第1頁
2024年全球人工智能趨勢(shì)報(bào)告 2024 Global AI Trends Report 2024 Global Trends in Al_第2頁
2024年全球人工智能趨勢(shì)報(bào)告 2024 Global AI Trends Report 2024 Global Trends in Al_第3頁
2024年全球人工智能趨勢(shì)報(bào)告 2024 Global AI Trends Report 2024 Global Trends in Al_第4頁
2024年全球人工智能趨勢(shì)報(bào)告 2024 Global AI Trends Report 2024 Global Trends in Al_第5頁
已閱讀5頁,還剩84頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024GlobalAITrendsReport

HTMLtoPDF

DiscoverhowAIistransformingindustriesandwhatittakestostayahead.Readthefull2024GlobalAITrendsReport,basedonasurveyof1,500AIpractitioners,tounlockkeyinsightsandstrategiesfornavigatingtherapidlyevolvingAIlandscape.

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

HTMLtoPDF

Tableofcontents

Introduction

Keyfindings

DefiningAIleaders

AImaturityandadoption

AIprojectscalingchallenges

RiseofgenerativeAI

GPUavailability

Environmentalimpact

Conclusions

Methodology

Abouttheauthors

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

Introduction

The2024GlobalTrendsinAIreportdelvesintotheunderlyingtrendssurroundingAIadoption.Inlastyear’sGlobalTrendsinAIreport,we

exploredthedividebetweenorganizations

thatweresuccessfullyrunningAIinproductionandthosethatwerenot.Inthisyear’sstudy,

werevisitthisAIleadershiptheme,drawingonsomekeypracticesthatleadingorganizationsaredoingdifferently—whiledeep-divingintothevaluedrivers,infrastructuredecisionsandenvironmentalpracticesthatareshapingAI

strategies.Todevelopthisstudy,S&PGlobal

HTMLtoPDF

MarketIntelligencesurveyedmorethan1,500globalAIdecision-makersandengagedin1:1interviewswithseniorITexecutivesabouttheirAIprojectsandinitiatives.

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

Keyfindings

1.AIapplicationsarenow

pervasiveintheenterprise;

investmentsinproductquality

andITefficiencyaretoppriorities.

AIadoptioncontinuesatbreakneckspeed,withthetechnologyincreasinglyviewedasan

embeddedandstrategiccapability.

–AIinitiativesarematuringrapidly:Inthelastyear,reportedlevelsofAImaturity

haveundergonearadicalshift.In2023,surveyrespondentswerestilllargely

experimentingwithAIorhadisolated

deploymentsinsmallpocketsoftheir

organizations.Thisyear,themajorityofrespondentsreportthatAIis“currently

widelyimplemented”and“drivingcriticalvalue”intheirorganization.

–Productimprovementandoperational

effectivenessarekeyinvestmentdrivers:OrganizationsareincreasinglyapplyingAItoenhancetop-linerevenueand

competitivedifferentiation,withimprovingproductorservicequality(42%)themostpopularobjective,andwithmany

targetingincreasedrevenuegrowth(39%).Simultaneously,

organizationsrecognizethepotentialtoboosttheiroperationaleffectivenessbyimprovingworkforceproductivity(40%)andITefficiencies(41%),alongwith

acceleratingtheiroverallpaceofinnovation(39%).

HTMLtoPDF

2.ManyAIprojectsfailtoscale—legacydataarchitecturesarethe

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

culprit.

AIprojectsarechallengedbyweakdatafoundations.Legacydataarchitecturesareimpedingbroaderdeployment.

–Achievingscaleremainsachallenge:

Organizationsarefacingsignificant

challengesinachievingthedesiredreachoftheirAIprojects.Theaverage

organizationhas10projectsinthepilotphaseand16inlimiteddeployment,butonlysixdeployedatscale.

–Availabilityofqualitydataisamajorobstacle:DataqualityisthegreatestchallengetomovingAIprojectsintoproduction.Thechallengeforprojectteamsisnotsomuch

aboutidentifyingrelevantdata,butits

availability;organizationsarestrugglingtobuildaconsistent,integrateddata

foundationforprojects.

–Modernizingdataarchitecturesiscriticaltosuccess:Giventhis,itisunsurprising

thatthegreatestproportionof

respondents(35%)citestorageanddatamanagementastheprimary

infrastructureissueshinderingAI

deployments—significantlygreaterthancompute(26%),security(23%)and

networking(15%).

HTMLtoPDF

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

GenerativeAItrailblazers

arethe24%oforganizationsthatsuggestthat

generativeAIisan

integratedcapabilityacrossworkflowswithintheir

business.

3.GenerativeAIhasrapidly

eclipsedotherAIapplications.

GenerativeAIhasgainedsignificanttractioninashorttime.AItrailblazersarerealizing

concretebenefitsandarepoisedto

compoundtheircompetitiveadvantage.

–GenerativeAIisthefocus:Anastonishing88%oforganizationsarenowactively

investigatinggenerativeAI,far

outstrippingotherAIapplicationssuchaspredictionmodels(61%),classification

(51%),expertsystems(39%)androbotics

(30%).

DedicatedbudgetsforgenerativeAIasaproportionofoverallAIinvestmentsare

growingasorganizationsbeginto

recognizethepotentialbenefitsof

integratedgenerativeAIcapabilities.

–GenerativeAIadoptionisexploding:

Despiteonlybeinginthemarketfora

relativelyshorttime,24%oforganizationssaytheyalreadyseegenerativeAIasanintegratedcapabilitydeployedacross

theirorganization.Just11%ofrespondentsarenotinvestingingenerativeAIatall,

HTMLtoPDF

andthemajorityoforganizationsareactivelyintheprocessofturningthisinvestmentintoscaled-up,integratedcapabilities.

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

–GenerativeAItrailblazersareexpectedtocompoundtheircompetitiveadvantage:Organizationsthathavealready

integratedgenerativeAIacrosstheir

organizationplantocontinueincreasingtheirinvestments:TheyexpectgenerativeAIbudgetstoreach47%oftheirtotalAI

budgetinthenext12months,far

outpacingless“AI-mature”organizations.ThemajorityofthesegenerativeAI

trailblazersareseeingasignificant

positiveimpactfromthetechnology

acrossthefullrangeoftargetedbenefits.Thosebenefitsarelikelytocompound

theircompetitiveadvantagegiventhatthosestillintheexperimentationphasesoftheirgenerativeAIprojectsarenot

seeingthesameincreasesin

organizationalinnovation,newproductdevelopmentandtimetomarket.

4.GPUavailabilitycontinuestobeconstrained,shaping

infrastructuredecision-making.

AccesstoGPUsisamajorconcernfor

organizations;GPUcloudsmayofferascalablesolution.

–AccessingGPUscontinuestobea

challenge:Fourin10organizations

surveyedsuggestaccesstoAI

acceleratorsisaleadingconsiderationintheirinfrastructuredecision-making,and30%citeGPUavailabilityamongtheirtopthreemostseriouschallengesinmovingAImodelsintoproduction.

–Regionalpressurespersist:Insome

geographies,particularlyinAsia-Pacific,lackofaccesstoGPUsisrestricting

organizationsfromdeployingAI;38%of

organizationsinIndiaseeaccelerator

HTMLtoPDF

accessamongtheirtopthreechallengestomovingAIprojectsintoproduction.

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

HTMLtoPDF

–HyperscalerandGPUcloudsserveaskeychannelsforcompaniestoaccessGPUs:Theneedforacceleratorshasdriven46%ofsurveyedorganizationstoleverage

hyperscalepubliccloudsformodeltraining,aswellas—increasingly—specialistGPUcloudproviders(32%).

5.ConcernsaboutAI’s

environmentalimpactpersistbutarenotslowingAIadoption;

sustainableAIpracticesofferopportunitytomitigate

emissions.

AI’senvironmentalandenergyimpactisstillaprominentconcernformanyorganizations,butitisnotslowingthedecisiontoinvestinAI

projects.Withmanyorganizationsseeing

sustainabilitypracticesdelivermeaningful

impacts,thereisaclearopportunitytoaddresstheemissionschallenge.

–ConcernsaboutAI’senergyandcarbonimpactremainprominent:Nearlytwo-

thirds(64%)oforganizationssaythattheyareconcernedabouttheimpactof

AI/machinelearning(ML)projectsontheirenergyuseandcarbonfootprint;25%of

organizationsindicatetheyareveryconcerned.

–Adoptionofsustainabledata

infrastructuretechnologiesisanareaoffocus:Clearly,sustainabilitycredentials

fromtechnologyprovidersarebecomingessential,with42%oforganizations

indicatingthattheyhaveinvestedin

energy-efficientIThardware/systemstoaddressthepotentialenvironmental

impactsoftheirAIinitiativesover

thepast12months.Ofthose,56%believethishashada“high”or“veryhigh”impact.Othershavefoundthatmakingchangesindatainfrastructurevendors(59%)and

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

AIprojectscope(57%)havehada“high”or“veryhigh”impact.

–Sustainabilityisanimportant,butnot

theprimary,factorinAIdecision-

making:Morethanaquarter(30%)of

organizationsreportthatsustainability

initiativesareadriverofAIadoptionas

theylooktoapplyAItoimproveenergy

efficiencyandmitigateemissions.Whilethisisnotable,sustainabilityis,infact,theleast-mentioneddriveroverall.Even

whereenergy-reductioninitiativesarethegoal,meetingsustainabilitytargetscan

takeabackseattocostsavingsand

improvingoperationalefficiencies

astheprincipalobjective.InthecontextofalltheissuesthatmoststronglyinformAIinfrastructuredecision-making,

sustainabilityismid-table:37%of

organizationsareprioritizingit,butitis

outrankedbymoreprominentissuessuchassecurity(47%)andaccesstoAI

accelerators(44%).

HTMLtoPDF

DefiningAIleaders

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

Inthepastyear,thesentimenttowardAIhas

rapidlychanged,ashasAI’sstrategicrole.AI

maturityhasgrowntothepointthatthevast

majorityoforganizationshavesomeformofAIinproduction,soacomparisonofthe“haves”andthe“havenots”offerslittleanalyticalvalue.Instead,theemergingdivideappearstobe

thosethatareabletoharnessthelatest

technologybreakthroughsanddeliverAIatscale,andthosethatcannot.

WiththemostsignificantAIbreakthroughandarguablymostimportanttechnological

innovationinthepastdecade,generativeAIasastrategicimperativeisinescapable.Those

thathavequicklyandefficientlytappedinto

thistechnologicalbreakthrougharedistancingthemselvesfromthechasingpack.

HTMLtoPDF

Basedontheseassumptions,wehavedefinedAIleaderstobethosethathavereportedthefollowingaccomplishments:

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

–AI/MLprojectsinproductionenvironmentsdrivingreal-worldimpactincritical

operations.

–ImplementedAI/MLwidelyacrosstheirorganization,achievingfargreaterscalethanlimitedandsiloedAIprojects.

–Capitalizedonthemostsignificant

technologicalbreakthroughofthis

decade(generativeAI)andpositioneditasanintegratedcapabilityacrosstheir

businessandworkflows.

–Thetop10%ofthemarketengagein

severaldistinguishingpracticesthatsetthemapartfromthebulkoforganizationsacrossthereport’sfivekeythemes.

Figure2:WhoareAIleadersin2024?

10%oftotal(n=153)

Source:S&PGlobalMarketIntelligence451ResearchGlobalTrendsinAIcustomsurvey,2024.

ThereareseveralnoticeablevariancesinthemakeupandcharacteristicsofAIleadersin2024.

–Industry:Healthcarerespondents(18%)

haveagreaterproportionofAIleadersthanotherindustries.

–Companysize:Enterprises(16%)with

greateraccesstocapital,resources,AIskillsetsandtypicallymorematuredigital

transformationprojectsleadother

HTMLtoPDF

companysizesproportionallyasAIleaders.

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

–Region:NorthAmerica(16%)hasa

significantlygreaterproportionofAIleadersthanAsia-Pacific(8%)andEMEA(6%).

ContributingfactorsmaybegreateraccesstoAItalentfromindustryandeducational

institutions,andregionalavailabilityofventurefundingandcapital.

–Businessmodels:AIproviders(15%)are

morelikelytobeconsideredAIleadersthanotherorganizations.However,thedifferenceislesspronouncedthanonemightassume;insomeinstances,AIproviders,despite

buildingAIsolutionsforcustomers,havenotnecessarilyfullyimplementedcapabilities

withintheirowncompany.

AIapplications

arenowpervasiveintheenterprise;investmentsin

productqualityandITefficiencyaretoppriorities

Inthelastyear,AI’srolehaschangedwithinmanyorganizations,shiftingfromaminor

componentofanoverallstrategytoacriticalembeddedcapability.

HTMLtoPDF

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

Keyinsights:

–Themostcommonadoptionstatusfor

AIhasshiftedfromaminor

componentofabroaderstrategyin

2023tocurrentlywidelyimplementedanddrivingcriticalvaluein2024.

–ImprovingproductorservicequalityandgeneratingcostsavingsfromITefficienciesaretheleadingdriversfordevelopingAIapplications.

–Manystrategicobjectivessuchas

improvingtimetomarketandgainingproductorservicedifferentiationareseeinggreaterfocus.

AIisbecomingafundamentalaspectofmanyorganizations’strategies,increasinglyseenasbothwidelyimplementedandcritical.The

proportionofrespondentswhoindicatethatAIisa“minorcomponentofabroaderstrategy”

intheirorganizationhalvedfromlastyear’s

survey,whiletheproportionofrespondents

whoseeAIas“widelyimplemented,driving

criticalvalue”increasedfrom28%to33%,

becomingthemostcommonanswer.ForNorthAmericarespondents,itisevenhigherat48%,incomparisontoAsia-Pacific(26%)andEMEA(25%).

HTMLtoPDF

AIseeingwiderdeploymentin2024

AIorganizationalscale

2024

2023

Widelyimplemented

33%

28%

Fewusecases

33%

26%

Singleusecase

16%

16%

Minorcomponent

17%

30%

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

AI’sreachisnotlimitedtothebreadthof

implementationbutincludesthetechnology’sstrategicimpact.Historically,AI’svalue

propositionhasbeencloselyassociatedwith

reducingcosts.PreviousAIadvancementsin

roboticprocessautomation,forexample,werecloselyalignedwithobjectivessuchas

headcountreductionorreducingoutsourcingcosts.Itisnotsomuchthatthecost-reductionopportunitypresentedbyAIisbeingcrowdedout—indeed,generatingcostsavingsfromITefficienciesisthesecondmostpopular

objectiveforAI—rather,costdriversarebeingpairedwithmorestrategicobjectives.For

example,morethanathird(39%)of

respondentsinoursurveyseerevenuegrowthasakeydriveroftheirAIinitiatives.AsFigure3illustrates,companiesarenotjusttryingto

achievemorewithAIthantheywerelastyear,buttheyalsoseeacleareralignmentwith

revenuedrivers.TheyaresignificantlymoreawareoftheopportunityforAItobeusedtogainproductdifferentiationanddrive

improvedtimetomarketthantheywerelastyear.

Figure3:Theyear-over-yearchangeindriversforAI

applicationdevelopment

HTMLtoPDF

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

WhatareAIleadersdoing

differently?

LeadersperceiveawiderrangeofobjectivesasdrivingtheirAI

strategies.Thisspreadof

objectiveshelpsbetterinform

whereAIcouldbemostimpactful.ItalsosetsthebasisforastrongerbusinesscaseforinvestinginAI,

helpingbuildanarrativethatcanappealtoawiderspreadof

stakeholders.

“Istartedwiththeseexperimentsayearandahalfago.Andthenittookusayeartobuild…wenowhaveabout5-10use

casesinproduction.”

CIO,transportation/logistics/warehousing,

1,000-5,000employees,US

HTMLtoPDF

ManyAIprojectsfailtoscale;

legacydata

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

architecturesaretheculprit

AI’sgrowingstrategicimportanceisdrivingasignificantincreaseininitiativesacross

businesses.Broadexperimentationand

educationareandorganizationswouldbe

remissnottoencourageit.However,the

opportunityisbeingthrottledbyprojectsthatlackaclearpathwaytorecognizingvalue,

hamperedbydatachallenges.AIprojectsriskstallinginalimiteddeploymentpurgatory,

costingacompanymoney,timeand

resources,whilenotseeingdesiredlevelsof

use.Initiativesarebecomingsnaggedondatasiloes,poordataqualityandineffectivedata

andmodelpipelines.

Keyinsights:

–Intheaverageorganization,51%ofAIprojectsareinproductionbutnot

beingdeliveredatscale.

–DataqualityisthegreatestinhibitorwhenmovingAIprojectsinto

productionenvironments.

–Storageanddatamanagementarethemostcommoninfrastructural

inhibitorstoAIinitiatives,identifiedby35%oforganizations;however,thosethathaveAIwidelyimplementedfeelthesechallengeslesskeenly.

AsorganizationsinvesttoapplyAItoanever-growingsetofobjectives,akinkisemerginginorganizations’projectpipelines.Whilemore

initiativesarefunneledtowardAIproject

HTMLtoPDF

teams,thereisabuildupofinitiativesthathave

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

onlybeenpartiallydeployed.AsFigure4

illustrates,respondentorganizations,on

average,havemoreprojectsclassifiedas

beinginproductionwithalimiteddeploymentthanscaled-upcapabilities.Inchasingnew

initiatives,manyorganizationsmayfailto

maximizethevalueoftheirexisting

investments.Thecruxoftheproblemappearstobedataqualityandavailability,withlegacydataarchitecturescausingthispipeline

stoppageinmanyorganizations.

Dataqualityisthemostfrequentlyidentified

challengeasorganizationsmovetheirprojectsfrompilotstoproduction.AsFigure5illustrates,dataqualityconcerns—identifiedby42%of

organizationsasamongtheirtopthreebarriers—areevenmoresignificantthanskills

shortages(32%)andbudgetlimitations(31%).Organizationsinmediaandentertainment

(59%),highereducation(53%),andaerospaceanddefense(48%)feelthedataquality

challengeparticularlykeenly.

Figure4:Manyprojectsfailto

graduatefromlimited

HTMLtoPDF

deploymenttodeliveringatscale

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

Q.HowmanyAI/MLprojectsdoyoucurrentlyhave:In

pilot/proofofconcept;inproduction,limiteddeployment;inproduction,atscale?

Base:Allrespondents(n=1,519).

Source:S&PGlobalMarketIntelligence451ResearchGlobalTrendsinAIcustomsurvey,2024.

Thedataqualitychallengeisnotalackofdatatobuildperformantmodelsbut,rather,thatthedataisnotsetupinsuchaswaythatprojectteamscantakefulladvantageofit.When

askedspecificallytoranktheprimarydatachallengestomoveprojectstoproductionenvironments,respondentsindicatedthat

availabilityofqualitydataisamorenotableimpedimentthanidentifyingrelevantdata.

With34%oforganizationsperceiving

availabilityofqualitydataasatopthreedatachallenge,outrankedonlybydataprivacy

concerns(35%),itisclearthatmany

organizationsarepoorlysetupforeffectivedatamanagement.

Legacydatatechnologiesseemtobea

leadingcauseofthesedatamanagement

shortcomings.DatamanagementandstoragearemostcommonlyseenastheinfrastructurecomponentsthatinhibitAIapplication

development.Morethanathird(35%)of

respondentsseethemasamoreseriousissuethansecurity(23%),compute(26%)and

HTMLtoPDF

networkingresources(15%).

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

Tellingly,organizationsthataremosteffectivelyscalingAIinitiativesarelessconstrainedby

thesedatamanagementandstorage

components.Just28%ofrespondentswho

reportedthatAIiswidelyimplementedwithin

theirorganizationperceivestorageanddata

managementchallengesastheirgreatest

inhibitor;instead,theyfeelgreaterpressure

fromnetworkingorcomputeresources.This

comparesto42%ofrespondentswhoperceiveAIasbeinglimitedtoafewusecasesor

projectswithintheirorganization.OrganizationsthataredeliveringAIatscaleappeartohave

focusedoninvestinginupgradingthesystemsandtechnologiesusedtostoreormanage

data.

“Westillhavechallengeswithmasterdata.BrancheshaddifferentSKUsforinventory;ifItakethatsiloeddataandputitintoamodel,we’llgetthewrongresults.Cleaningupthisdataisour

focus.”

CIO,transportation/logistics/warehousing

1,000-5,000employees,US

Figure5:TopthreeimpedimentstoorganizationsmovinganAI/MLapplicationfrompilotto

HTMLtoPDF

productionenvironments

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

Q.Whataretheprimarychallengesorimpedimentsto

movinganAI/MLapplicationfromproof-of

concept/pilotingstagestoproductionenvironments?Base:Allrespondents(n=1,519).

Source:S&PGlobalMarketIntelligence451ResearchGlobalTrendsinAIcustomsurvey,2024.

Thisinvestmentappearstobekeybecause

datamanagementandstorageshortcomingsarefilteringthroughintoAIprojectlifecycles,withorganizationsstrugglingtoeffectively

preparedataformodelbuildingand

deployment.Manyorganizationsreportthat

themostchallengingaspectsofAIinitiatives

arethedatapreprocessingstages(seeFigure6).Despitethegrowingnumberof

organizationsindicatingthatAIhasbeen

widelyimplementedwithintheirorganization

overthepast12months,therehasbeenno

meaningfulimprovementyearoveryearin

termsofperformanceagainstthesedata

preprocessingsteps.BringingAIprojectslive

butlimitingtheirvalueorextensibilitywithweakdatafoundationssetsapoorprecedentforthenextwaveofinitiativesintheearlystagesof

HTMLtoPDF

exploration.

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

“ThefirstthingI’vedoneisdoubleddownondatastrategy,effectivelybuildinga

dataplatformandgovernanceand

capabilitiesaroundthat.Thisgivesus

morecontroloverourdata.You’ll

probablyfindinalotofcompaniesthattheyboltedonmanyofthese

acquisitionsandhavealotofdisparatesystems,whichmeansdisparatedata–that’sachallenge.”

CIO,manufacturing/foodandbeverage

1,000-5,000employees,UK

Figure6:OrganizationsfindtheearlydatastepsoftheAIlife

cycleaschallengingasmodelbuilding

Proportionofrespondentsthat

identifyAIlifecyclestageas“mostchallenging”

Q.WhatstagesoftheAI/MLapplicationlifecyclearecurrentlythemostchallenging(Rank1)?

Base:Allrespondents(n=1,519).

Source:S&PGlobalMarketIntelligence451ResearchGlobalTrendsinAIcustomsurvey,2024.

Immaturedatamanagementtoolsetsareaworryingbackdropfortheincreasinglydata-hungryAIstrategiesmanyorganizationsareembarkingupon.Morethanthree-quarters

(80%)ofrespondentsforecastanincrease

HTMLtoPDF

overthenext12monthsinthevolumeofdata

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

theyusetodeveloptheirAImodels,andjust

lessthanhalf(49%)areforecastinggrowthindatavolumesofmorethan25%.Perhapsmorefundamentally,though,isthatthechallengefororganizationsthatunderinvestindata

managementmaycomewithnewdata-

relatedpressures—inparticular,themixof

datatypesorganizationsareemployingfor

modeltraining.Theproportionoforganizationsusingunstructuredrichmediaandtextdata

forAIinitiativeshasincreasedsince2023,andoutdateddatamanagementtechnologies

maypreventorganizationsfromdeliveringtheseprojectsmeaningfully.

WhatareAIleadersdoing

differently?

Leadersaresignificantlylesslikelytoseestorageanddata

managementastheirprimary

inhibitors,presumablybecausethesecompanieshavealready

prioritizedmodernizingtheirdataarchitectures.Bybuildingasoliddatafoundationattheoutset,AI

leadershaveensuredthat

HTMLtoPDF

valuablepilotshaveaclearpathtodeliveratscale.

Exploreourdeveloper-friendly

HTMLtoPDFAPI

Printedusing

PDFCrowd

GenerativeAIhasrapidlyeclipsedotherAI

applications

Organizationshaverushedtoinvestin

generativeAI,withinterestoutstrippinglonger-standingformsofAI.Asthedustsettlesonthisexplosionofinvestment,asmallcohortof

generativeAItrailblazershasemerged.Theseorganizationshavemorewidelyintegrated

capabilitiesandareseeingsignificant

competitivebenefitsfromthetechnology

aroundnewproductdevelopment,enhancedinnovationandfastertime-to-market.These

competitiveadvantagesarelikelytogrowasgenerativeAItrailblazerssetouttoestablishasignificantgapbetweenthemselvesand

HTMLtoPDF

others,shapedbytheirinvestmentandinfrastructuraladvantages.

Keyinsights:

–88%oforganizationsareactivelyinvestigatinggenerativeAI.

–24%alreadyseegenerativeAIas

havinggraduatedtoanintegratedcapabilityacrosstheirorganization.

–ThemajorityofthesegenerativeAI

trailblazersseea“high”or

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論