版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024GlobalAITrendsReport
HTMLtoPDF
DiscoverhowAIistransformingindustriesandwhatittakestostayahead.Readthefull2024GlobalAITrendsReport,basedonasurveyof1,500AIpractitioners,tounlockkeyinsightsandstrategiesfornavigatingtherapidlyevolvingAIlandscape.
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
HTMLtoPDF
Tableofcontents
Introduction
Keyfindings
DefiningAIleaders
AImaturityandadoption
AIprojectscalingchallenges
RiseofgenerativeAI
GPUavailability
Environmentalimpact
Conclusions
Methodology
Abouttheauthors
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
Introduction
The2024GlobalTrendsinAIreportdelvesintotheunderlyingtrendssurroundingAIadoption.Inlastyear’sGlobalTrendsinAIreport,we
exploredthedividebetweenorganizations
thatweresuccessfullyrunningAIinproductionandthosethatwerenot.Inthisyear’sstudy,
werevisitthisAIleadershiptheme,drawingonsomekeypracticesthatleadingorganizationsaredoingdifferently—whiledeep-divingintothevaluedrivers,infrastructuredecisionsandenvironmentalpracticesthatareshapingAI
strategies.Todevelopthisstudy,S&PGlobal
HTMLtoPDF
MarketIntelligencesurveyedmorethan1,500globalAIdecision-makersandengagedin1:1interviewswithseniorITexecutivesabouttheirAIprojectsandinitiatives.
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
Keyfindings
1.AIapplicationsarenow
pervasiveintheenterprise;
investmentsinproductquality
andITefficiencyaretoppriorities.
AIadoptioncontinuesatbreakneckspeed,withthetechnologyincreasinglyviewedasan
embeddedandstrategiccapability.
–AIinitiativesarematuringrapidly:Inthelastyear,reportedlevelsofAImaturity
haveundergonearadicalshift.In2023,surveyrespondentswerestilllargely
experimentingwithAIorhadisolated
deploymentsinsmallpocketsoftheir
organizations.Thisyear,themajorityofrespondentsreportthatAIis“currently
widelyimplemented”and“drivingcriticalvalue”intheirorganization.
–Productimprovementandoperational
effectivenessarekeyinvestmentdrivers:OrganizationsareincreasinglyapplyingAItoenhancetop-linerevenueand
competitivedifferentiation,withimprovingproductorservicequality(42%)themostpopularobjective,andwithmany
targetingincreasedrevenuegrowth(39%).Simultaneously,
organizationsrecognizethepotentialtoboosttheiroperationaleffectivenessbyimprovingworkforceproductivity(40%)andITefficiencies(41%),alongwith
acceleratingtheiroverallpaceofinnovation(39%).
HTMLtoPDF
2.ManyAIprojectsfailtoscale—legacydataarchitecturesarethe
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
culprit.
AIprojectsarechallengedbyweakdatafoundations.Legacydataarchitecturesareimpedingbroaderdeployment.
–Achievingscaleremainsachallenge:
Organizationsarefacingsignificant
challengesinachievingthedesiredreachoftheirAIprojects.Theaverage
organizationhas10projectsinthepilotphaseand16inlimiteddeployment,butonlysixdeployedatscale.
–Availabilityofqualitydataisamajorobstacle:DataqualityisthegreatestchallengetomovingAIprojectsintoproduction.Thechallengeforprojectteamsisnotsomuch
aboutidentifyingrelevantdata,butits
availability;organizationsarestrugglingtobuildaconsistent,integrateddata
foundationforprojects.
–Modernizingdataarchitecturesiscriticaltosuccess:Giventhis,itisunsurprising
thatthegreatestproportionof
respondents(35%)citestorageanddatamanagementastheprimary
infrastructureissueshinderingAI
deployments—significantlygreaterthancompute(26%),security(23%)and
networking(15%).
HTMLtoPDF
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
GenerativeAItrailblazers
arethe24%oforganizationsthatsuggestthat
generativeAIisan
integratedcapabilityacrossworkflowswithintheir
business.
3.GenerativeAIhasrapidly
eclipsedotherAIapplications.
GenerativeAIhasgainedsignificanttractioninashorttime.AItrailblazersarerealizing
concretebenefitsandarepoisedto
compoundtheircompetitiveadvantage.
–GenerativeAIisthefocus:Anastonishing88%oforganizationsarenowactively
investigatinggenerativeAI,far
outstrippingotherAIapplicationssuchaspredictionmodels(61%),classification
(51%),expertsystems(39%)androbotics
(30%).
DedicatedbudgetsforgenerativeAIasaproportionofoverallAIinvestmentsare
growingasorganizationsbeginto
recognizethepotentialbenefitsof
integratedgenerativeAIcapabilities.
–GenerativeAIadoptionisexploding:
Despiteonlybeinginthemarketfora
relativelyshorttime,24%oforganizationssaytheyalreadyseegenerativeAIasanintegratedcapabilitydeployedacross
theirorganization.Just11%ofrespondentsarenotinvestingingenerativeAIatall,
HTMLtoPDF
andthemajorityoforganizationsareactivelyintheprocessofturningthisinvestmentintoscaled-up,integratedcapabilities.
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
–GenerativeAItrailblazersareexpectedtocompoundtheircompetitiveadvantage:Organizationsthathavealready
integratedgenerativeAIacrosstheir
organizationplantocontinueincreasingtheirinvestments:TheyexpectgenerativeAIbudgetstoreach47%oftheirtotalAI
budgetinthenext12months,far
outpacingless“AI-mature”organizations.ThemajorityofthesegenerativeAI
trailblazersareseeingasignificant
positiveimpactfromthetechnology
acrossthefullrangeoftargetedbenefits.Thosebenefitsarelikelytocompound
theircompetitiveadvantagegiventhatthosestillintheexperimentationphasesoftheirgenerativeAIprojectsarenot
seeingthesameincreasesin
organizationalinnovation,newproductdevelopmentandtimetomarket.
4.GPUavailabilitycontinuestobeconstrained,shaping
infrastructuredecision-making.
AccesstoGPUsisamajorconcernfor
organizations;GPUcloudsmayofferascalablesolution.
–AccessingGPUscontinuestobea
challenge:Fourin10organizations
surveyedsuggestaccesstoAI
acceleratorsisaleadingconsiderationintheirinfrastructuredecision-making,and30%citeGPUavailabilityamongtheirtopthreemostseriouschallengesinmovingAImodelsintoproduction.
–Regionalpressurespersist:Insome
geographies,particularlyinAsia-Pacific,lackofaccesstoGPUsisrestricting
organizationsfromdeployingAI;38%of
organizationsinIndiaseeaccelerator
HTMLtoPDF
accessamongtheirtopthreechallengestomovingAIprojectsintoproduction.
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
HTMLtoPDF
–HyperscalerandGPUcloudsserveaskeychannelsforcompaniestoaccessGPUs:Theneedforacceleratorshasdriven46%ofsurveyedorganizationstoleverage
hyperscalepubliccloudsformodeltraining,aswellas—increasingly—specialistGPUcloudproviders(32%).
5.ConcernsaboutAI’s
environmentalimpactpersistbutarenotslowingAIadoption;
sustainableAIpracticesofferopportunitytomitigate
emissions.
AI’senvironmentalandenergyimpactisstillaprominentconcernformanyorganizations,butitisnotslowingthedecisiontoinvestinAI
projects.Withmanyorganizationsseeing
sustainabilitypracticesdelivermeaningful
impacts,thereisaclearopportunitytoaddresstheemissionschallenge.
–ConcernsaboutAI’senergyandcarbonimpactremainprominent:Nearlytwo-
thirds(64%)oforganizationssaythattheyareconcernedabouttheimpactof
AI/machinelearning(ML)projectsontheirenergyuseandcarbonfootprint;25%of
organizationsindicatetheyareveryconcerned.
–Adoptionofsustainabledata
infrastructuretechnologiesisanareaoffocus:Clearly,sustainabilitycredentials
fromtechnologyprovidersarebecomingessential,with42%oforganizations
indicatingthattheyhaveinvestedin
energy-efficientIThardware/systemstoaddressthepotentialenvironmental
impactsoftheirAIinitiativesover
thepast12months.Ofthose,56%believethishashada“high”or“veryhigh”impact.Othershavefoundthatmakingchangesindatainfrastructurevendors(59%)and
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
AIprojectscope(57%)havehada“high”or“veryhigh”impact.
–Sustainabilityisanimportant,butnot
theprimary,factorinAIdecision-
making:Morethanaquarter(30%)of
organizationsreportthatsustainability
initiativesareadriverofAIadoptionas
theylooktoapplyAItoimproveenergy
efficiencyandmitigateemissions.Whilethisisnotable,sustainabilityis,infact,theleast-mentioneddriveroverall.Even
whereenergy-reductioninitiativesarethegoal,meetingsustainabilitytargetscan
takeabackseattocostsavingsand
improvingoperationalefficiencies
astheprincipalobjective.InthecontextofalltheissuesthatmoststronglyinformAIinfrastructuredecision-making,
sustainabilityismid-table:37%of
organizationsareprioritizingit,butitis
outrankedbymoreprominentissuessuchassecurity(47%)andaccesstoAI
accelerators(44%).
HTMLtoPDF
DefiningAIleaders
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
Inthepastyear,thesentimenttowardAIhas
rapidlychanged,ashasAI’sstrategicrole.AI
maturityhasgrowntothepointthatthevast
majorityoforganizationshavesomeformofAIinproduction,soacomparisonofthe“haves”andthe“havenots”offerslittleanalyticalvalue.Instead,theemergingdivideappearstobe
thosethatareabletoharnessthelatest
technologybreakthroughsanddeliverAIatscale,andthosethatcannot.
WiththemostsignificantAIbreakthroughandarguablymostimportanttechnological
innovationinthepastdecade,generativeAIasastrategicimperativeisinescapable.Those
thathavequicklyandefficientlytappedinto
thistechnologicalbreakthrougharedistancingthemselvesfromthechasingpack.
HTMLtoPDF
Basedontheseassumptions,wehavedefinedAIleaderstobethosethathavereportedthefollowingaccomplishments:
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
–AI/MLprojectsinproductionenvironmentsdrivingreal-worldimpactincritical
operations.
–ImplementedAI/MLwidelyacrosstheirorganization,achievingfargreaterscalethanlimitedandsiloedAIprojects.
–Capitalizedonthemostsignificant
technologicalbreakthroughofthis
decade(generativeAI)andpositioneditasanintegratedcapabilityacrosstheir
businessandworkflows.
–Thetop10%ofthemarketengagein
severaldistinguishingpracticesthatsetthemapartfromthebulkoforganizationsacrossthereport’sfivekeythemes.
Figure2:WhoareAIleadersin2024?
10%oftotal(n=153)
Source:S&PGlobalMarketIntelligence451ResearchGlobalTrendsinAIcustomsurvey,2024.
ThereareseveralnoticeablevariancesinthemakeupandcharacteristicsofAIleadersin2024.
–Industry:Healthcarerespondents(18%)
haveagreaterproportionofAIleadersthanotherindustries.
–Companysize:Enterprises(16%)with
greateraccesstocapital,resources,AIskillsetsandtypicallymorematuredigital
transformationprojectsleadother
HTMLtoPDF
companysizesproportionallyasAIleaders.
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
–Region:NorthAmerica(16%)hasa
significantlygreaterproportionofAIleadersthanAsia-Pacific(8%)andEMEA(6%).
ContributingfactorsmaybegreateraccesstoAItalentfromindustryandeducational
institutions,andregionalavailabilityofventurefundingandcapital.
–Businessmodels:AIproviders(15%)are
morelikelytobeconsideredAIleadersthanotherorganizations.However,thedifferenceislesspronouncedthanonemightassume;insomeinstances,AIproviders,despite
buildingAIsolutionsforcustomers,havenotnecessarilyfullyimplementedcapabilities
withintheirowncompany.
AIapplications
arenowpervasiveintheenterprise;investmentsin
productqualityandITefficiencyaretoppriorities
Inthelastyear,AI’srolehaschangedwithinmanyorganizations,shiftingfromaminor
componentofanoverallstrategytoacriticalembeddedcapability.
HTMLtoPDF
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
Keyinsights:
–Themostcommonadoptionstatusfor
AIhasshiftedfromaminor
componentofabroaderstrategyin
2023tocurrentlywidelyimplementedanddrivingcriticalvaluein2024.
–ImprovingproductorservicequalityandgeneratingcostsavingsfromITefficienciesaretheleadingdriversfordevelopingAIapplications.
–Manystrategicobjectivessuchas
improvingtimetomarketandgainingproductorservicedifferentiationareseeinggreaterfocus.
AIisbecomingafundamentalaspectofmanyorganizations’strategies,increasinglyseenasbothwidelyimplementedandcritical.The
proportionofrespondentswhoindicatethatAIisa“minorcomponentofabroaderstrategy”
intheirorganizationhalvedfromlastyear’s
survey,whiletheproportionofrespondents
whoseeAIas“widelyimplemented,driving
criticalvalue”increasedfrom28%to33%,
becomingthemostcommonanswer.ForNorthAmericarespondents,itisevenhigherat48%,incomparisontoAsia-Pacific(26%)andEMEA(25%).
HTMLtoPDF
AIseeingwiderdeploymentin2024
AIorganizationalscale
2024
2023
Widelyimplemented
33%
28%
Fewusecases
33%
26%
Singleusecase
16%
16%
Minorcomponent
17%
30%
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
AI’sreachisnotlimitedtothebreadthof
implementationbutincludesthetechnology’sstrategicimpact.Historically,AI’svalue
propositionhasbeencloselyassociatedwith
reducingcosts.PreviousAIadvancementsin
roboticprocessautomation,forexample,werecloselyalignedwithobjectivessuchas
headcountreductionorreducingoutsourcingcosts.Itisnotsomuchthatthecost-reductionopportunitypresentedbyAIisbeingcrowdedout—indeed,generatingcostsavingsfromITefficienciesisthesecondmostpopular
objectiveforAI—rather,costdriversarebeingpairedwithmorestrategicobjectives.For
example,morethanathird(39%)of
respondentsinoursurveyseerevenuegrowthasakeydriveroftheirAIinitiatives.AsFigure3illustrates,companiesarenotjusttryingto
achievemorewithAIthantheywerelastyear,buttheyalsoseeacleareralignmentwith
revenuedrivers.TheyaresignificantlymoreawareoftheopportunityforAItobeusedtogainproductdifferentiationanddrive
improvedtimetomarketthantheywerelastyear.
Figure3:Theyear-over-yearchangeindriversforAI
applicationdevelopment
HTMLtoPDF
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
WhatareAIleadersdoing
differently?
LeadersperceiveawiderrangeofobjectivesasdrivingtheirAI
strategies.Thisspreadof
objectiveshelpsbetterinform
whereAIcouldbemostimpactful.ItalsosetsthebasisforastrongerbusinesscaseforinvestinginAI,
helpingbuildanarrativethatcanappealtoawiderspreadof
stakeholders.
“Istartedwiththeseexperimentsayearandahalfago.Andthenittookusayeartobuild…wenowhaveabout5-10use
casesinproduction.”
CIO,transportation/logistics/warehousing,
1,000-5,000employees,US
HTMLtoPDF
ManyAIprojectsfailtoscale;
legacydata
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
architecturesaretheculprit
AI’sgrowingstrategicimportanceisdrivingasignificantincreaseininitiativesacross
businesses.Broadexperimentationand
educationareandorganizationswouldbe
remissnottoencourageit.However,the
opportunityisbeingthrottledbyprojectsthatlackaclearpathwaytorecognizingvalue,
hamperedbydatachallenges.AIprojectsriskstallinginalimiteddeploymentpurgatory,
costingacompanymoney,timeand
resources,whilenotseeingdesiredlevelsof
use.Initiativesarebecomingsnaggedondatasiloes,poordataqualityandineffectivedata
andmodelpipelines.
Keyinsights:
–Intheaverageorganization,51%ofAIprojectsareinproductionbutnot
beingdeliveredatscale.
–DataqualityisthegreatestinhibitorwhenmovingAIprojectsinto
productionenvironments.
–Storageanddatamanagementarethemostcommoninfrastructural
inhibitorstoAIinitiatives,identifiedby35%oforganizations;however,thosethathaveAIwidelyimplementedfeelthesechallengeslesskeenly.
AsorganizationsinvesttoapplyAItoanever-growingsetofobjectives,akinkisemerginginorganizations’projectpipelines.Whilemore
initiativesarefunneledtowardAIproject
HTMLtoPDF
teams,thereisabuildupofinitiativesthathave
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
onlybeenpartiallydeployed.AsFigure4
illustrates,respondentorganizations,on
average,havemoreprojectsclassifiedas
beinginproductionwithalimiteddeploymentthanscaled-upcapabilities.Inchasingnew
initiatives,manyorganizationsmayfailto
maximizethevalueoftheirexisting
investments.Thecruxoftheproblemappearstobedataqualityandavailability,withlegacydataarchitecturescausingthispipeline
stoppageinmanyorganizations.
Dataqualityisthemostfrequentlyidentified
challengeasorganizationsmovetheirprojectsfrompilotstoproduction.AsFigure5illustrates,dataqualityconcerns—identifiedby42%of
organizationsasamongtheirtopthreebarriers—areevenmoresignificantthanskills
shortages(32%)andbudgetlimitations(31%).Organizationsinmediaandentertainment
(59%),highereducation(53%),andaerospaceanddefense(48%)feelthedataquality
challengeparticularlykeenly.
Figure4:Manyprojectsfailto
graduatefromlimited
HTMLtoPDF
deploymenttodeliveringatscale
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
Q.HowmanyAI/MLprojectsdoyoucurrentlyhave:In
pilot/proofofconcept;inproduction,limiteddeployment;inproduction,atscale?
Base:Allrespondents(n=1,519).
Source:S&PGlobalMarketIntelligence451ResearchGlobalTrendsinAIcustomsurvey,2024.
Thedataqualitychallengeisnotalackofdatatobuildperformantmodelsbut,rather,thatthedataisnotsetupinsuchaswaythatprojectteamscantakefulladvantageofit.When
askedspecificallytoranktheprimarydatachallengestomoveprojectstoproductionenvironments,respondentsindicatedthat
availabilityofqualitydataisamorenotableimpedimentthanidentifyingrelevantdata.
With34%oforganizationsperceiving
availabilityofqualitydataasatopthreedatachallenge,outrankedonlybydataprivacy
concerns(35%),itisclearthatmany
organizationsarepoorlysetupforeffectivedatamanagement.
Legacydatatechnologiesseemtobea
leadingcauseofthesedatamanagement
shortcomings.DatamanagementandstoragearemostcommonlyseenastheinfrastructurecomponentsthatinhibitAIapplication
development.Morethanathird(35%)of
respondentsseethemasamoreseriousissuethansecurity(23%),compute(26%)and
HTMLtoPDF
networkingresources(15%).
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
Tellingly,organizationsthataremosteffectivelyscalingAIinitiativesarelessconstrainedby
thesedatamanagementandstorage
components.Just28%ofrespondentswho
reportedthatAIiswidelyimplementedwithin
theirorganizationperceivestorageanddata
managementchallengesastheirgreatest
inhibitor;instead,theyfeelgreaterpressure
fromnetworkingorcomputeresources.This
comparesto42%ofrespondentswhoperceiveAIasbeinglimitedtoafewusecasesor
projectswithintheirorganization.OrganizationsthataredeliveringAIatscaleappeartohave
focusedoninvestinginupgradingthesystemsandtechnologiesusedtostoreormanage
data.
“Westillhavechallengeswithmasterdata.BrancheshaddifferentSKUsforinventory;ifItakethatsiloeddataandputitintoamodel,we’llgetthewrongresults.Cleaningupthisdataisour
focus.”
CIO,transportation/logistics/warehousing
1,000-5,000employees,US
Figure5:TopthreeimpedimentstoorganizationsmovinganAI/MLapplicationfrompilotto
HTMLtoPDF
productionenvironments
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
Q.Whataretheprimarychallengesorimpedimentsto
movinganAI/MLapplicationfromproof-of
concept/pilotingstagestoproductionenvironments?Base:Allrespondents(n=1,519).
Source:S&PGlobalMarketIntelligence451ResearchGlobalTrendsinAIcustomsurvey,2024.
Thisinvestmentappearstobekeybecause
datamanagementandstorageshortcomingsarefilteringthroughintoAIprojectlifecycles,withorganizationsstrugglingtoeffectively
preparedataformodelbuildingand
deployment.Manyorganizationsreportthat
themostchallengingaspectsofAIinitiatives
arethedatapreprocessingstages(seeFigure6).Despitethegrowingnumberof
organizationsindicatingthatAIhasbeen
widelyimplementedwithintheirorganization
overthepast12months,therehasbeenno
meaningfulimprovementyearoveryearin
termsofperformanceagainstthesedata
preprocessingsteps.BringingAIprojectslive
butlimitingtheirvalueorextensibilitywithweakdatafoundationssetsapoorprecedentforthenextwaveofinitiativesintheearlystagesof
HTMLtoPDF
exploration.
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
“ThefirstthingI’vedoneisdoubleddownondatastrategy,effectivelybuildinga
dataplatformandgovernanceand
capabilitiesaroundthat.Thisgivesus
morecontroloverourdata.You’ll
probablyfindinalotofcompaniesthattheyboltedonmanyofthese
acquisitionsandhavealotofdisparatesystems,whichmeansdisparatedata–that’sachallenge.”
CIO,manufacturing/foodandbeverage
1,000-5,000employees,UK
Figure6:OrganizationsfindtheearlydatastepsoftheAIlife
cycleaschallengingasmodelbuilding
Proportionofrespondentsthat
identifyAIlifecyclestageas“mostchallenging”
Q.WhatstagesoftheAI/MLapplicationlifecyclearecurrentlythemostchallenging(Rank1)?
Base:Allrespondents(n=1,519).
Source:S&PGlobalMarketIntelligence451ResearchGlobalTrendsinAIcustomsurvey,2024.
Immaturedatamanagementtoolsetsareaworryingbackdropfortheincreasinglydata-hungryAIstrategiesmanyorganizationsareembarkingupon.Morethanthree-quarters
(80%)ofrespondentsforecastanincrease
HTMLtoPDF
overthenext12monthsinthevolumeofdata
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
theyusetodeveloptheirAImodels,andjust
lessthanhalf(49%)areforecastinggrowthindatavolumesofmorethan25%.Perhapsmorefundamentally,though,isthatthechallengefororganizationsthatunderinvestindata
managementmaycomewithnewdata-
relatedpressures—inparticular,themixof
datatypesorganizationsareemployingfor
modeltraining.Theproportionoforganizationsusingunstructuredrichmediaandtextdata
forAIinitiativeshasincreasedsince2023,andoutdateddatamanagementtechnologies
maypreventorganizationsfromdeliveringtheseprojectsmeaningfully.
WhatareAIleadersdoing
differently?
Leadersaresignificantlylesslikelytoseestorageanddata
managementastheirprimary
inhibitors,presumablybecausethesecompanieshavealready
prioritizedmodernizingtheirdataarchitectures.Bybuildingasoliddatafoundationattheoutset,AI
leadershaveensuredthat
HTMLtoPDF
valuablepilotshaveaclearpathtodeliveratscale.
Exploreourdeveloper-friendly
HTMLtoPDFAPI
Printedusing
PDFCrowd
GenerativeAIhasrapidlyeclipsedotherAI
applications
Organizationshaverushedtoinvestin
generativeAI,withinterestoutstrippinglonger-standingformsofAI.Asthedustsettlesonthisexplosionofinvestment,asmallcohortof
generativeAItrailblazershasemerged.Theseorganizationshavemorewidelyintegrated
capabilitiesandareseeingsignificant
competitivebenefitsfromthetechnology
aroundnewproductdevelopment,enhancedinnovationandfastertime-to-market.These
competitiveadvantagesarelikelytogrowasgenerativeAItrailblazerssetouttoestablishasignificantgapbetweenthemselvesand
HTMLtoPDF
others,shapedbytheirinvestmentandinfrastructuraladvantages.
Keyinsights:
–88%oforganizationsareactivelyinvestigatinggenerativeAI.
–24%alreadyseegenerativeAIas
havinggraduatedtoanintegratedcapabilityacrosstheirorganization.
–ThemajorityofthesegenerativeAI
trailblazersseea“high”or
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025浙江長(zhǎng)興空域產(chǎn)業(yè)發(fā)展有限公司招聘職業(yè)經(jīng)理人1人參考筆試題庫附答案解析
- 2025內(nèi)蒙古鄂爾多斯羊絨服裝集團(tuán)絨紡事業(yè)部招聘20人備考筆試試題及答案解析
- 2025廣東廣州市越秀區(qū)人民街道辦事處招聘輔助人員2人備考筆試試題及答案解析
- 2025重慶市大足區(qū)國衡商貿(mào)有限責(zé)任公司招聘派遣制人員1人考試備考題庫及答案解析
- 重慶醫(yī)科大學(xué)附屬北碚醫(yī)院招聘護(hù)理10人考試備考題庫及答案解析
- 2025福建省國銀保安服務(wù)有限公司招聘教官2人模擬筆試試題及答案解析
- 2025黑龍江哈爾濱啟航勞務(wù)派遣有限公司派遣到哈爾濱工業(yè)大學(xué)航天學(xué)院空間控制與慣性技術(shù)研究中心招聘參考考試題庫及答案解析
- 2025湖北智新半導(dǎo)體有限公司招聘?jìng)淇脊P試試題及答案解析
- 重慶醫(yī)科大學(xué)附屬北碚醫(yī)院招聘護(hù)理10人參考筆試題庫附答案解析
- 網(wǎng)店合伙合同協(xié)議
- 【數(shù) 學(xué)】2025-2026學(xué)年北師大版數(shù)學(xué)七年級(jí)上冊(cè)期末練習(xí)(一)
- 2026年哈爾濱鐵道職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫帶答案
- 珠海市紀(jì)委監(jiān)委公開招聘所屬事業(yè)單位工作人員12人考試題庫附答案
- 2025內(nèi)蒙古鄂爾多斯東勝區(qū)消防救援大隊(duì)招聘鄉(xiāng)鎮(zhèn)(街道)消防安全服務(wù)中心專職工作人員招聘3人考試筆試模擬試題及答案解析
- 心肌炎與心包炎管理指南中心肌炎部分解讀2026
- 2025濟(jì)寧市檢察機(jī)關(guān)招聘聘用制書記員(31人)筆試考試參考試題及答案解析
- 2025年安全總監(jiān)年終總結(jié)報(bào)告
- 安順市人民醫(yī)院招聘聘用專業(yè)技術(shù)人員筆試真題2024
- 廚師專業(yè)職業(yè)生涯規(guī)劃與管理
- 統(tǒng)編版高中政治必修二經(jīng)濟(jì)與社會(huì) 選擇題 專項(xiàng)練習(xí)題(含答案)
- 《恒X地產(chǎn)集團(tuán)地區(qū)公司管理辦法》(16年12月發(fā)文版)
評(píng)論
0/150
提交評(píng)論