版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.2、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm3、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形4、下列事件為隨機事件的是()A.四個人分成三組,恰有一組有兩個人 B.購買一張福利彩票,恰好中獎C.在一個只裝有白球的盒子里摸出了紅球 D.?dāng)S一次骰子,向上一面的點數(shù)小于75、下列事件中,是必然事件的是()A.實心鐵球投入水中會沉入水底B.車輛隨機到達(dá)一個路口,遇到紅燈C.打開電視,正在播放《大國工匠》D.拋擲一枚硬幣,正面向上6、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°7、下列說法錯誤的是()A.必然事件發(fā)生的概率是1 B.不可能事件發(fā)生的概率為0C.隨機事件發(fā)生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能發(fā)生8、下列各點中,關(guān)于原點對稱的兩個點是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知⊙A的半徑為5,圓心A(4,3),坐標(biāo)原點O與⊙A的位置關(guān)系是______.2、如圖,在平面直角坐標(biāo)系內(nèi),∠OA0A1=90°,∠A1OA0=60°,以O(shè)A1為直角邊向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法進(jìn)行下去,得到Rt△OA2A3,Rt△OA3A4…,若點A0的坐標(biāo)是(1,0),則點A2021的橫坐標(biāo)是___________.3、如圖,在中,,是內(nèi)的一個動點,滿足.若,,則長的最小值為_______.4、在一個不透明的袋子里,有2個白球和2個紅球,它們只有顏色上的區(qū)別,從袋子里隨機摸出兩個球,則摸到兩個都是紅球的概率是_______.5、一個不透明的袋子中放有3個紅球和5個白球,這些球除顏色外均相同,隨機從袋子中摸出一球,摸到紅球的概率為_____.6、已知60°的圓心角所對的弧長是3.14厘米,則它所在圓的周長是______厘米.7、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.三、解答題(7小題,每小題0分,共計0分)1、在平面直角坐標(biāo)系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.2、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.3、已知,P是直線AB上一動點(不與A,B重合),以P為直角頂點作等腰直角三角形PBD,點E是直線AD與△PBD的外接圓除點D以外的另一個交點,直線BE與直線PD相交于點F.(1)如圖,當(dāng)點P在線段AB上運動時,若∠DBE=30°,PB=2,求DE的長;(2)當(dāng)點P在射線AB上運動時,試探求線段AB,PB,PF之間的數(shù)量關(guān)系,并給出證明.4、一個幾何體的三個視圖如圖所示(單位:cm).(1)寫出這個幾何體的名稱:;(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計算這個幾何體的表面積.5、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時,直接出的值.6、對于平面直角坐標(biāo)系xOy中的圖形M和點P給出如下定義:Q為圖形M上任意一點,若P,Q兩點間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點P為圖形M的“二分點”.已知點N(3,0),A(1,0),,.(1)①在點A,B,C中,線段ON的“二分點”是______;②點D(a,0),若點C為線段OD的“二分點”,求a的取值范圍;(2)以點O為圓心,r為半徑畫圓,若線段AN上存在的“二分點”,直接寫出r的取值范圍.7、如圖,四邊形ABCD內(nèi)接于⊙O,AC是直徑,點C是劣弧BD的中點.(1)求證:.(2)若,,求BD.-參考答案-一、單選題1、C【分析】根據(jù)概率的求法,找準(zhǔn)兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關(guān)鍵.2、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.3、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.4、B【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、四個人分成三組,恰有一組有兩個人,是必然事件,不合題意;B、購買一張福利彩票,恰好中獎,是隨機事件,符合題意;C、在一個只裝有白球的盒子里摸出了紅球,是不可能事件,不合題意;D、擲一次骰子,向上一面的點數(shù)小于7,是必然事件,不合題意;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、A【分析】根據(jù)必然事件、不可能事件、隨機事件的概念進(jìn)行判斷即可.【詳解】解:A、實心鐵球投入水中會沉入水底,是必然事件,該選項符合題意;B、車輛隨機到達(dá)一個路口,遇到紅燈,是隨機事件,該選項不合題意;C、打開電視,正在播放《大國工匠》,是隨機事件,該選項不合題意;D、拋擲一枚硬幣,正面向上,是隨機事件,該選項不合題意;故選:A.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.7、D【分析】根據(jù)概率的意義分別判斷后即可確定正確的選項.【詳解】解:A.必然事件發(fā)生的概率是1,故該選項正確,不符合題意;B.不可能事件發(fā)生的概率是0,故該選項正確,不符合題意;C.隨機事件發(fā)生的可能性越大,它的概率就越接近1,故該選項正確,不符合題意;D.概率很小的事件也可能發(fā)生,故該選項不正確,符合題意;故選D【點睛】本題考查概率的意義,理解概率的意義反映的只是這一事件發(fā)生的可能性的大?。罕厝话l(fā)生的事件發(fā)生的概率為1,隨機事件發(fā)生的概率大于0且小于1,不可能事件發(fā)生的概率為0.8、D【分析】根據(jù)關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標(biāo)不滿足關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故A錯誤;B、(0,2)與(2,0)橫、縱坐標(biāo)不滿足關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故B錯誤;C、(﹣2,﹣1)與(﹣2,1)關(guān)于x軸對稱,故C錯誤;D、關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),故D正確;故選:D.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù).二、填空題1、在⊙A上【分析】先根據(jù)兩點間的距離公式計算出OA,然后根據(jù)點與圓的位置關(guān)系的判定方法判斷點O與⊙A的位置關(guān)系.【詳解】解:∵點A的坐標(biāo)為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點O在⊙A上.故答案為:在⊙A上.【點睛】本題考查了點與圓的位置關(guān)系:點與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,當(dāng)點P在圓外?d>r;當(dāng)點P在圓上?d=r;當(dāng)點P在圓內(nèi)?d<r.2、22020【分析】根據(jù),,點的坐標(biāo)是,得,點的橫坐標(biāo)是,點的橫坐標(biāo)是-,同理可得點的橫坐標(biāo)是,點的橫坐標(biāo)是,點的橫坐標(biāo)是,點的橫坐標(biāo)是,點的橫坐標(biāo)是,依次進(jìn)行下去,可得點的橫坐標(biāo),進(jìn)而求得的橫坐標(biāo).【詳解】解:∵∠OA0A1=90°,∠A1OA0=60°,點A0的坐標(biāo)是(1,0),∴OA0=1,∴點A1的橫坐標(biāo)是1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴點A2的橫坐標(biāo)是-OA2=-2=-21,依次進(jìn)行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:點A3的橫坐標(biāo)是﹣2OA2=﹣8=﹣23,點A4的橫坐標(biāo)是﹣8=﹣23,點A5的橫坐標(biāo)是OA5=×2OA4=2OA3=4OA2=16=24,點A6的橫坐標(biāo)是2OA5=2×2OA4=23OA3=64=26,點A7的橫坐標(biāo)是64=26,…發(fā)現(xiàn)規(guī)律,6次一循環(huán),即,,2021÷6=336……5則點A2021的橫坐標(biāo)與的坐標(biāo)規(guī)律一致是22020.故答案為:22020.【點睛】本題考查了規(guī)律型——點的坐標(biāo),解決本題的關(guān)鍵是理解動點的運動過程,總結(jié)規(guī)律,發(fā)現(xiàn)規(guī)律,點A3n在軸上,且坐標(biāo)為.3、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點D的運動軌跡.4、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球為,白球為,列表得:∵一共有12種情況,摸到兩個都是紅球有2種,∴P(兩個球都是紅球),故答案是.【點睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.5、【分析】讓紅球的個數(shù)除以球的總數(shù)即為摸到紅球的概率.【詳解】解:∵紅球的個數(shù)為3個,球的總數(shù)為3+5=8(個),∴摸到紅球的概率為,故答案為:.【點睛】本題考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、18.84【分析】先根據(jù)弧長公式求得πr,然后再運用圓的周長公式解答即可.【詳解】解:設(shè)圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長為(厘米),故答案為:.【點睛】本題主要考查了弧長公式、圓的周長公式等知識點,牢記弧長公式是解答本題的關(guān)鍵.7、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應(yīng)輔助線,綜合運用這些知識點是解題關(guān)鍵.三、解答題1、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點O作OD⊥AB于點D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當(dāng)⊙O的半徑等于OD時最小,當(dāng)⊙O的半徑等于OB時最大,即可求解;(3)過點C作CN⊥AB于點N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當(dāng)點C在點A的右側(cè)時,當(dāng)點C與點A重合時,當(dāng)點C在點A的左側(cè)時,即可求解.【詳解】解:(1)∵⊙O的半徑為2,A(,0),B(0,).∴,∴點A在⊙O上,點B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)過點O作OD⊥AB于點D,∵點A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,線段AB)=0,∴當(dāng)⊙O的半徑等于OD時最小,當(dāng)⊙O的半徑等于OB時最大,∴r的取值范圍是,(3)如圖,過點C作CN⊥AB于點N,∵點A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),當(dāng)點C在點A的右側(cè)時,,∴,∴,∵d(⊙C,線段AB)<1,⊙C的半徑為1,∴,解得:,當(dāng)點C與點A重合時,,此時d(⊙C,線段AB)=0,當(dāng)點C在點A的左側(cè)時,,∴,∴,解得:,∴.【點睛】本題主要考查了點與圓的位置關(guān)系,點與直線的位置關(guān)系,理解新定義,熟練掌握點與圓的位置關(guān)系,點與直線的位置關(guān)系是解題的關(guān)鍵.2、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進(jìn)而得到OM=BF=2,可得到CM=OM,進(jìn)而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識點是解題的關(guān)鍵.3、(1)(2)PF=AB-PB或PF=AB+PB,理由見解析【分析】(1)根據(jù)△PBD等腰直角三角形,PB=2,求出DB的長,由⊙O是△PBD的外接圓,∠DBE=30°,可得答案;(2)根據(jù)同弧所對的圓周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可證△APD≌△FPB,可得答案.【詳解】解:(1)由題意畫以下圖,連接EP,∵△PBD等腰直角三角形,⊙O是△PBD的外接圓,∴∠DPB=∠DEB=90°,∵PB=2,∴,∵∠DBE=30°,∴(2)①點P在點A、B之間,由(1)的圖根據(jù)同弧所對的圓周角相等,可得:∠ADP=∠FBP,又∵△PBD等腰直角三角形,∴∠DPB=∠APD=90°,DP=BP,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∵AP+PB=AB∴FP+PB=AB,∴FP=AB-PB,②點P在點B的右側(cè),如下圖:∵△PBD等腰直角三角形,∴∠DPB=∠APF=90°,DP=BP,∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,∴∠PBF=∠PDA,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∴AB+PB=AP,∴AB+PB=PF,∴PF=AB+PB.綜上所述,F(xiàn)P=AB-PB或PF=AB+PB.【點睛】本題考查了圓的性質(zhì),等腰直角三角形,三角形全等的判定,做題的關(guān)鍵是注意(2)的兩種情況.4、(1)長方體或四棱柱(2)66cm2【分析】(1)這個立方體的三視圖都是長方形所以這個幾何體應(yīng)該是長方體;(2)長方體一共有6個面,算長方體的表面積應(yīng)該把這6個面的面積相加即可.(1)∵這個立方體的三視圖都是長方形,∴這個立方體是長方體或四棱柱.(2)由三視圖知該長方體的表面積:(3)(3×4)×4+(3×3)×2=66(cm2)【點睛】本題考查了由立體圖形的三視圖確定立體圖形的形狀;根據(jù)邊長求表面積大小.解題的關(guān)鍵是要有空間想象能力.長方體有六個面,算表面積時不要遺漏.5、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點共線,∴BF+CE=BF+FC′≥BC′,∴點F在BC′上時,BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年揚州市江都婦幼保健院公開招聘編外合同制專業(yè)技術(shù)人員備考題庫參考答案詳解
- 苗木租山合同范本
- 莆田漁政協(xié)議書
- 蜜桔買賣協(xié)議書
- 認(rèn)罪認(rèn)罰協(xié)議書
- 設(shè)備通訊協(xié)議書
- 試劑銷售協(xié)議書
- 試藥免責(zé)協(xié)議書
- 年度會員合同范本
- 手術(shù)前麻醉協(xié)議書
- 2025年滁州市公安機關(guān)公開招聘警務(wù)輔助人員50人備考題庫及一套參考答案詳解
- 2025年云南省人民檢察院聘用制書記員招聘(22人)備考筆試題庫及答案解析
- 從廢墟到寶庫:熱解技術(shù)的飛躍發(fā)展
- 工商銀行貸款合同(標(biāo)準(zhǔn)版)
- 激光切割機日常保養(yǎng)表
- 廣播電視安全播出工作總結(jié)
- 熒光腹腔鏡知識培訓(xùn)總結(jié)
- 知道網(wǎng)課《微積分(I)(南昌大學(xué))》課后章節(jié)測試答案
- 暢游黑龍江課件
- 給水工程綜合管廊施工方案
- 人教版五年級數(shù)學(xué)上冊第六單元多邊形的面積學(xué)業(yè)質(zhì)量測評卷(含答案)
評論
0/150
提交評論