基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)試試卷_第1頁(yè)
基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)試試卷_第2頁(yè)
基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)試試卷_第3頁(yè)
基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)試試卷_第4頁(yè)
基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)試試卷_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,正方形的面積為256,點(diǎn)F在上,點(diǎn)E在的延長(zhǎng)線上,的面積為200,則的長(zhǎng)為()A.10 B.11 C.12 D.152、如圖是用若干個(gè)全等的等腰梯形拼成的圖形,下列說(shuō)法錯(cuò)誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是3、如圖,在長(zhǎng)方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長(zhǎng)是()A.4 B.3 C.4或8 D.3或64、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點(diǎn)E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°5、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(

)A.②④ B.①②④

C.①②③④

D.②③④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、一個(gè)三角形三邊長(zhǎng)之比為4∶5∶6,三邊中點(diǎn)連線組成的三角形的周長(zhǎng)為30cm,則原三角形最大邊長(zhǎng)為_(kāi)________cm.2、如圖,在平面直角坐標(biāo)系中,O是菱形ABCD對(duì)角線BD的中點(diǎn),AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D落在x軸上,則旋轉(zhuǎn)后點(diǎn)C的對(duì)應(yīng)點(diǎn)的坐標(biāo)是_____________.3、正方形ABCD的邊長(zhǎng)是8cm,點(diǎn)M在BC邊上,且MC=2cm,P是正方形邊上的一個(gè)動(dòng)點(diǎn),連接PB交AM于點(diǎn)N,當(dāng)PB=AM時(shí),PN的長(zhǎng)是_____.4、如圖,將長(zhǎng)方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.5、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開(kāi)線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點(diǎn)A,O,B,C循環(huán),點(diǎn)A的坐標(biāo)為(2,0),按此規(guī)律進(jìn)行下去,則點(diǎn)P2021的坐標(biāo)為_(kāi)____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,將直角三角形分割成一個(gè)正方形和兩對(duì)全等的直角三角形,在Rt△ABC中,∠ACB=90°,四邊形FCEO是正方形,Rt△AOF≌Rt△AOD,Rt△BOE≌Rt△BOD.若設(shè)正方形的邊長(zhǎng)為x,則可以探究x與直角三角形ABC的三邊a,b,c之間的關(guān)系.探究:∵Rt△BOE≌Rt△BOD,∴BD=BE=a﹣x,∵Rt△AOF≌Rt△AOD,∴AD=AF=b﹣x,∵AB=BD+AD,∴a﹣x+b﹣x=c,∴x=.(1)小穎同學(xué)發(fā)現(xiàn)利用S△ABC=S△AOB+S△AOC+S△BOC也可以探究正方形的邊長(zhǎng)x與直角三角形ABC的三邊a,b,c之間的關(guān)系.請(qǐng)你根據(jù)小穎的思路,完成她的探究過(guò)程.(2)請(qǐng)你結(jié)合探究和小穎的解答過(guò)程驗(yàn)證勾股定理.

2、如圖,四邊形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分別為E、F.求證:BE=BF.3、如圖,在?ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BD延長(zhǎng)線上一點(diǎn),且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.4、如圖,已知矩形中,點(diǎn),分別是,上的點(diǎn),,且.(1)求證:;(2)若,求:的值.5、D、分別是不等邊三角形即的邊、的中點(diǎn).是平面上的一動(dòng)點(diǎn),連接、,、分別是、的中點(diǎn),順次連接點(diǎn)、、、.(1)如圖,當(dāng)點(diǎn)在內(nèi)時(shí),求證:四邊形是平行四邊形;(2)若四邊形是菱形,點(diǎn)所在位置應(yīng)滿足什么條件?(直接寫(xiě)出答案,不需說(shuō)明理由.)-參考答案-一、單選題1、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計(jì)算CE,根據(jù)正方形ABCD的面積計(jì)算BC,根據(jù)勾股定理計(jì)算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因?yàn)镽t△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點(diǎn)睛】本題考查了正方形,等腰直角三角形面積的計(jì)算,考查了直角三角形中勾股定理的運(yùn)用,本題中求證CF=CE是解題的關(guān)鍵.2、D【解析】【分析】如圖(見(jiàn)解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項(xiàng);先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項(xiàng).【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項(xiàng)B正確;沒(méi)有指明哪個(gè)角是底角,梯形的底角是或,選項(xiàng)D錯(cuò)誤;如圖,連接,,是等邊三角形,,,點(diǎn)共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項(xiàng)A、C正確;故選:D.【點(diǎn)睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握各判定與性質(zhì)是解題關(guān)鍵.3、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長(zhǎng)為3或6.故選D.【點(diǎn)睛】本題考查折疊問(wèn)題:折疊前后兩圖形全等,即對(duì)應(yīng)線段相等;對(duì)應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類(lèi)討論,避免漏解.4、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進(jìn)行計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點(diǎn)睛】本題考查了長(zhǎng)方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計(jì)算的應(yīng)用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).5、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對(duì)①作出判斷;延長(zhǎng)EF,交CD延長(zhǎng)線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對(duì)②作出判斷;由△AEF≌△DMF可得這兩個(gè)三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯(cuò)誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計(jì)算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點(diǎn),∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長(zhǎng)EF,交CD延長(zhǎng)線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點(diǎn),∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯(cuò)誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識(shí),構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點(diǎn).二、填空題1、24【解析】【分析】由三邊長(zhǎng)之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長(zhǎng)求出三中位線長(zhǎng),推出邊長(zhǎng),再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點(diǎn)∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長(zhǎng)∴故填24.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.2、或##或【解析】【分析】分當(dāng)D落在x軸正半軸時(shí)和當(dāng)D落在x軸負(fù)半軸時(shí),兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)D落在x軸正半軸時(shí),∵O是菱形ABCD對(duì)角線BD的中點(diǎn),∴AO⊥DO,∴當(dāng)D落在x軸正半軸時(shí),A點(diǎn)在y軸正半軸,∴同理可得A、B、C三點(diǎn)均在坐標(biāo)軸上,且點(diǎn)C在y軸負(fù)半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點(diǎn)C的坐標(biāo)為(0,);如圖2所示,當(dāng)D落在x軸負(fù)半軸時(shí),同理可得,∴點(diǎn)C的坐標(biāo)為(0,);∴綜上所述,點(diǎn)C的坐標(biāo)為(0,)或(0,),故答案為:(0,)或(0,).【點(diǎn)睛】本題主要考查了菱形的性質(zhì),坐標(biāo)與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.3、5cm或5.2cm【解析】【分析】當(dāng)點(diǎn)P在BC上,AM>BP,當(dāng)點(diǎn)P在AB上,AM>BP,當(dāng)點(diǎn)P在CD上,如圖,根據(jù)PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據(jù)勾股定理可求AM=,根據(jù)三角形面積可求,可求PN=BP-BN;當(dāng)點(diǎn)P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據(jù)AM=BP=10cm,可求PN=cm,【詳解】解:當(dāng)點(diǎn)P在BC上,AM>BP,當(dāng)點(diǎn)P在AB上,AM>BP,不合題意,舍去;當(dāng)點(diǎn)P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵M(jìn)C=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當(dāng)點(diǎn)P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長(zhǎng)為5cm或5.2cm.故答案為5cm或5.2cm.【點(diǎn)睛】本題考查正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類(lèi)討論思想,掌握正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類(lèi)討論思想是解題關(guān)鍵.4、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點(diǎn)睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.5、(4044,0)【解析】【分析】由題意可知:正方形的邊長(zhǎng)為2,分別求得,可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點(diǎn)P2021在x軸正半軸,進(jìn)而求得OP的長(zhǎng)度,即可求得點(diǎn)的坐標(biāo).【詳解】由題意可知:正方形的邊長(zhǎng)為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點(diǎn)P2021在x軸正半軸,OP的長(zhǎng)度為2021×2+2=4044,即:P2021的坐標(biāo)是(4044,0),故答案為:(4044,0).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系點(diǎn)的坐標(biāo)規(guī)律,正方形的性質(zhì),找到點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.三、解答題1、(1),證明見(jiàn)解析;(2)見(jiàn)解析【分析】(1)由正方形的性質(zhì)可得OF=OE,OF⊥AC,OE⊥BC,由Rt△AOF≌Rt△AOD,可以推出OE=OD=OE,再由可得,由此即可得到答案;(2)根據(jù)(1)和題目已知可得,由此利用完全平方公式和平方差公式求解即可.【詳解】解:(1)如圖所示,連接OC∵四邊形OECF是正方形,∴OF=OE,OF⊥AC,OE⊥BC,∵Rt△AOF≌Rt△AOD,∴OF=OD,∴OE=OD=OE,∵∠ACB=90°,∴∴,∴,即∴;

(2)∵,∴,∴,∴,∴即.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì),平方差公式,完全平方公式,勾股定理的證明等等,解題的關(guān)鍵在于正確理解題意.2、見(jiàn)解析【分析】根據(jù)菱形的性質(zhì),可得AD=DC,AB=BC,∠A=∠C.從而得到△AED≌△CFD.從而得到AE=CF.即可求證.【詳解】證明:∵四邊形ABCD是菱形,∴AD=DC,AB=BC,∠A=∠C.∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∴△AED≌△CFD(AAS).∴AE=CF.∴AB﹣AE=BC﹣CF.即:BE=BF.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握菱形的對(duì)角相等,對(duì)邊相等是解題的關(guān)鍵.3、(1)見(jiàn)解析;(2)正方形ABCD的面積為【分析】(1)由等邊三角形的性質(zhì)得EO⊥AC,即BD⊥AC,再根據(jù)對(duì)角線互相垂直的平行四邊形是菱形,即可得出結(jié)論;(2)證明菱形ABCD是正方形,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AO=OC,∵△ACE是等邊三角形,∴EO⊥AC(三線合一),即BD⊥AC,∴?ABCD是菱形;(2)解:∵△ACE是等邊三角形,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論