版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省宜興市中考數(shù)學(xué)真題分類(勾股定理)匯編定向練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,△ABC中,,以其三邊分別向外側(cè)作正方形,然后將整個圖形放置于如圖所示的長方形中,若要求圖中兩個陰影部分面積之和,則只需知道(
)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積2、已知直角三角形的兩條邊長分別是3和4,那么這個三角形的第三條邊的長為(
)A.5 B.25 C. D.5或3、《九章算術(shù)》被尊為古代數(shù)學(xué)“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大?。凿忎徶?,深一寸,鋸道長一尺.問徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個木材,鋸口深等于1寸,鋸道長1尺,則圓形木材的直徑是(
)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸4、有一個直角三角形的兩邊長分別為3和4,則第三邊的長為()A.5 B. C. D.5或5、如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)的點F處,連接CF,則CF的長為()A. B. C. D.6、我國古代數(shù)學(xué)名著《算法統(tǒng)宗》有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭蹴.良工高士素好奇,算出索長有幾?”此問題可理解為:“如圖,有一架秋千,當它靜止時,踏板離地距離的長為尺,將它向前水平推送尺時,即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問繩索有多長?”,設(shè)秋千的繩索長為尺,根據(jù)題意可列方程為(
)A. B.C. D.7、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面0.7m,那么小巷的寬度為(
)A.3.2m B.3.5m C.3.9m D.4m第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,已知四邊形中,,則四邊形的面積等于________.2、如圖,將一個長方形紙片沿折疊,使C點與A點重合,若,則線段的長是_________.3、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.4、我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲校鏊怀撸绺鞍叮ㄕ?、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達池邊的水面D處,問水的深度是多少?則水深DE為_____尺.5、如圖,在的網(wǎng)格中每個小正方形的邊長都為1,的頂點、、都在格點上,點為邊的中點,則線段的長為________.6、如圖,在的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,點、、均在格點上,則______.7、我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設(shè)折斷處離地面的高度為x尺,根據(jù)題意,可列出關(guān)于x方程為:__________.8、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個正方形.若四個陰影部分面積分別為,,,,則的值為______,的值為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,CE⊥AB于點E,BD⊥AC于點D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.2、如圖,,兩個工廠位于一段直線形河道的異側(cè),工廠至河道的距離為,工廠至河道的距離為,經(jīng)測量河道上、兩地間的距離為,現(xiàn)準備在河邊某處(河寬不計)修一個污水處理廠.(1)設(shè),請用的代數(shù)式表示的長______;(結(jié)果保留根號)(2)為了使,兩廠到污水處理廠的排污管道之和最短,請在圖中畫出污水廠位置,并求出排污管道最短長度?(3)通過以上的解答,充分展開聯(lián)想,運用數(shù)形結(jié)合思想,請你求出的最小值為多少?3、如圖所示的一塊地,,,,,,求這塊地的面積.4、我國古代的數(shù)學(xué)名著《九章算術(shù)》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風(fēng)將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠.問:折處離地還有多高的竹子?(1丈=10尺)5、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計算敵方汽車的速度嗎?6、2020年春季“新冠肺炎”在武漢全面爆發(fā),蔓延全國,危及到人民生命安全,為了積極響應(yīng)國家防控政策,雙流區(qū)某鎮(zhèn)政府采用了移動宣講的形式進行宣傳防控措施,如圖,筆直公路的一側(cè)點處有一村莊,村莊到公路的距離為600米,假設(shè)宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時:(1)請問村莊能否聽到宣傳,請說明理由;(2)如果能聽到,已知宣講車的速度是200米/分鐘,那么村莊總共能聽到多長時間的宣傳?7、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))-參考答案-一、單選題1、D【解析】【分析】如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠正確作出輔助線,構(gòu)造全等三角形.2、D【解析】【分析】分情況討論:①當邊長為4的邊作斜邊時;②當邊長為4的邊作直角邊時,利用勾股定理分別求解即可.【詳解】解:當邊長為4的邊作斜邊時,第三條邊的長度為;當邊長為4的邊作直角邊時,第三條邊的長度為;綜上分析可知,這個三角形的第三條邊的長為5或,故D正確.故選:D.【考點】本題主要考查了勾股定理,掌握分類討論的思想是解題的關(guān)鍵.3、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設(shè)圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點,則O、C、D三點共線,OC⊥AB,∴AC=BC=AB=5(寸),設(shè)圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點】本題主要考查了垂徑定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.4、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計算即可.【詳解】解:當4是直角邊時,斜邊==5;當4是斜邊時,另一條直角邊=;故選:D.【考點】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.5、C【解析】【分析】連接BF,(見詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點,可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì),對應(yīng)點的連線被折痕垂直平分.6、C【解析】【分析】根據(jù)勾股定理列方程即可得出結(jié)論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點】本題主要考查了勾股定理的應(yīng)用,讀懂題意是解題的關(guān)鍵.7、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點】本題考查了勾股定理的應(yīng)用,正確理解題意、熟練掌握勾股定理是解題的關(guān)鍵.二、填空題1、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.2、【解析】【分析】根據(jù)折疊的性質(zhì)和勾股定理即可求得.【詳解】解:∵長方形紙片,∴,,根據(jù)折疊的性質(zhì)可得,,,設(shè),,根據(jù)勾股定理,即,解得,故答案為:.【考點】本題考查折疊與勾股定理.能正確表示直角三角形的三邊是解題關(guān)鍵.3、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時,勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.4、12【解析】【分析】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.5、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點O為AB邊的中點,∴CO=AB=2.5,故答案為:2.5.【考點】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.6、45°##45度【解析】【分析】取正方形網(wǎng)格中格點Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計算PQ=QB,進而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關(guān)鍵.7、【解析】【分析】設(shè)折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設(shè)折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.8、
24
0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個正方形,兩式相減可得:而故答案為:24,0【考點】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.三、解答題1、(1)見解析(2)【解析】【分析】(1)根據(jù)題目所給條件證即可;(2)由可得,由勾股定理可求BD,即可求解;(1)證明:∵,∴,∵,∴.(2)解:∵,∴,在中,,∴.【考點】本題主要考查三角形的全等證明、勾股定理,掌握三角形的全等證明及性質(zhì)是解題的關(guān)鍵.2、(1)+;(2)污水廠位置見解析,排污管道最短長度為10km;(3)13【解析】【分析】(1)依據(jù)ED=x,AC⊥CD、BD⊥CD,故根據(jù)勾股定理可用x表示出AE+BE的長;(2)根據(jù)兩點之間線段最短可知連接AB與CD的交點就是污水處理廠E的位置.過點B作BF⊥AC于F,構(gòu)造出直角三角形,利用勾股定理求出AB的長;(3)根據(jù)AE+BE=+=AB=10,可猜想所求代數(shù)式的值為13.(1)解:在Rt△ACE和Rt△BDE中,根據(jù)勾股定理可得AE=,BE=,∴AE+BE=+;(2)解:根據(jù)兩點之間線段最短可知,連接AB與CD的交點就是污水處理廠E的位置,如圖:過點B作BF⊥AC于F,則有BF=CD=8,BD=CF=1,∴AF=AC+CF=6,在Rt△ABF中,BA===10,∴排污管道最短長度10km;(3)解:根據(jù)以上推理,可作出下圖:設(shè)ED=x,AC=3,DB=2,CD=12.當A、E、B共線時求出AB的值即為原式最小值.當A、E、B共線時,==13,即其最小值為13.故答案為:13.【考點】本題考查了最短路線問題,綜合利用了勾股定理,及用數(shù)形結(jié)合的方法求代數(shù)式的值的方法,利用兩點之間線段最短是解決問題的關(guān)鍵.3、384【解析】【分析】連接,勾股定理求得,勾股定理的逆定理證明為直角三角形,進而根據(jù)三角形的面積公式計算和的面積之差即可.【詳解】解:連接,在直角中,,,由,解得,在中,,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (新教材)2026年青島版八年級上冊數(shù)學(xué) 5.3 無理數(shù) 課件
- 急產(chǎn)護理:助產(chǎn)士的角色與職責(zé)
- (新教材)2026年滬科版八年級下冊數(shù)學(xué) 17.2 一元二次方程的解法 課件
- 2025年辦公樓外墻施工保密條款合同協(xié)議
- 原料運輸防護技術(shù)規(guī)程
- 2025年自貿(mào)區(qū)醫(yī)療設(shè)備第三方檢測
- 專題01北極放大-沖刺2025年高考地理熱點梳理情境對點練
- 2026 年中職酒店管理(涉外酒店服務(wù))試題及答案
- 中國知識文化題庫及答案
- 辦公樓會議室防滑合同(商務(wù)活動2025)
- 長津湖課件教學(xué)課件
- 聚焦前沿:2025年職業(yè)教育產(chǎn)教融合共同體建設(shè)難題與對策研究
- 2025年廣西國家工作人員學(xué)法用法考試試題及答案
- (2025秋新版)蘇教版科學(xué)三年級上冊全冊教案
- 農(nóng)商行法律培訓(xùn)課件
- 部編版小學(xué)二年級語文上冊教學(xué)反思集體備課計劃
- 執(zhí)法用手機管理辦法
- 雙重管理安全員管理辦法
- 2019-2025年中國鮮切水果行業(yè)市場調(diào)查研究及投資前景預(yù)測報告
- 染色體核型分析報告解讀要點
- (高清版)DB1303∕T 357-2023 鮮食核桃果實主要病蟲害防治技術(shù)規(guī)程
評論
0/150
提交評論