版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、菱形ABCD的對角線AC,BD相交于點O,E,F(xiàn)分別是AD,CD邊上的中點,連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.82、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.133、如圖,在平面直角坐標系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.104、下列命題正確的是()A.對角線相等的四邊形是平行四邊形 B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直且相等的四邊形是正方形5、如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點G,連接DG、BF,給出以下結論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結論的個數(shù)是()A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,將n個邊長都為1的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為_____.2、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點P、E、F分別為線段AB、AD、DB上的動點,則PE+PF的最小值是_____.3、如圖,在中,,點、、分別是三邊的中點,且,則的長度是__________.4、如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.5、如圖,在中,,,,為上的兩個動點,且,則的最小值是________.三、解答題(5小題,每小題10分,共計50分)1、(1)如圖1中,∠A=90°,請用直尺和圓規(guī)作一條直線,把ABC分割成兩個等腰三角形(不寫作法,但須保留作圖痕跡).(2)已知內角度數(shù)的兩個三角形如圖2、圖3所示.請你判斷,能否分別畫一條直線把它們分割成兩個等腰三角形?若能,請畫出直線,并標注底角的度數(shù).(3)一個三角形有一內角為48°,如果經過其一個頂點作直線能把其分成兩個等腰三角形,那么它的最大的內角可能值為.2、如圖,?ABCD的對角線AC,BD相交于點O,點E,點F在線段BD上,且DE=BF.求證:AE∥CF.3、如圖所示,在邊長為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點的一動點,N是CD上一動點,且AM+CN=1.(1)證明:無論M,N怎樣移動,△BMN總是等邊三角形;(2)求△BMN面積的最小值.4、如圖,是的中位線,延長到,使,連接.求證:.
5、如圖,在中,過點作于點,點在邊上,,連接,.(1)求證:四邊形是矩形;(2)若,,,求證:平分.-參考答案-一、單選題1、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點睛】本題主要考查菱形的性質與中位線定理,熟練掌握中位線定理和菱形面積公式是關鍵.2、D【解析】【分析】由菱形的性質和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點睛】本題考查了菱形的性質、勾股定理等知識,熟練掌握菱形的性質,由勾股定理求出AB=13是解題的關鍵.3、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質以及三角形三邊關系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.4、C【解析】【分析】根據(jù)平行四邊形、矩形、菱形以及正方形的判定方法,對選項逐個判斷即可.【詳解】解:A、對角線互相平分的四邊形是平行四邊形,選項錯誤,不符合題意;B、對角線相等平行四邊形是矩形,選項錯誤,不符合題意;C、對角線互相垂直的平行四邊形是菱形,選項正確,符合題意;D、對角線互相垂直且相等的平行四邊形是正方形,選項錯誤,不符合題意;故選C【點睛】此題考查了平行四邊形、矩形、菱形以及正方形的判定,掌握它們的判定方法是解題的關鍵.5、D【解析】【分析】根據(jù)正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結合①可得AG=GF,根據(jù)等高的兩個三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長是12,∴BE=EC=EF=6,設AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結論的是4個.故選:D.【點睛】本題考查了圖形的翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.二、填空題1、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:由題意可得一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點睛】本題考查了正方形的性質,解題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.2、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,求出ME即可.【詳解】解:作出F關于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,此時P′E′+P′F=ME′,過點A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點睛】本題考查翻折變換,等腰三角形的性質,軸對稱?最短問題等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.3、【解析】【分析】根據(jù)中位線定理可得的長度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長度.【詳解】解:∵點、、分別是三邊的中點,且∴∵∴故答案為:【點睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關鍵.4、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.5cm,故答案為:2.5.【點睛】本題考查了矩形的性質的應用,勾股定理,三角形中位線的應用,解本題的關鍵是求出OD長及證明EF=OD.5、【解析】【分析】過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,三點D、M、A′共線時,最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點D、M、A′共線時,A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點睛】本題主要考查了等腰三角形的性質,平行四邊形的判定與性質,勾股定理等知識,構造平行四邊形將AN轉化為DM是解題的關鍵.三、解答題1、(1)見解析;(2)見解析;(3)108°【分析】(1)利用直角三角形斜邊上的中線等于斜邊的一半,作BC的垂直平分線即可確定點E,連接AE即可;(2)分別以24°為底角,可分割出兩個等腰三角形;(3)利用圖1、2、3中三角形內角之間的關系進行判斷.【詳解】解:(1)如圖,作BC的垂直平分線交BC于E,連接AE,則直線AE即為所求;(2)如圖:(3)根據(jù)(1)(2)中三個角之間的關系可知:當三角形是直角三角形時,肯定可以分割成兩個等腰三角形,此時最大角為90°;當一個角是另一個三倍時,也肯定可以分割成兩個等腰三角形,此時最大角為99°;如圖3,此時最大角為108°.綜上所述:最大角為108°,故答案為:108°.【點睛】本題主要考查垂直平分線的尺規(guī)作圖、直角三角形斜邊中線定理及等腰三角形的性質,熟練掌握垂直平分線的尺規(guī)作圖、直角三角形斜邊中線定理及等腰三角形的性質是解題的關鍵.2、見解析【分析】首先根據(jù)平行四邊形的性質推出AD=CB,AD∥BC,得到∠ADE=∠CBF,從而證明△ADE≌△CBF,得到∠AED=∠CFB,即可證明結論.【詳解】證:∵四邊形ABCD是平行四邊形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【點睛】本題考查平行四邊形的性質,以及全等三角形的判定與性質等,掌握平行四邊形的基本性質,準確證明全等三角形并利用其性質是解題關鍵.3、(1)見解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質易得∠MBN=60゜,從而可證得結論成立;(2)過點B作BE⊥MN于點E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過點B作BE⊥MN于點E.設BM=BN=MN=x,則,故,∴當BM⊥AD時,x最小,此時,,.∴△BMN面積的最小值為.【點睛】本題考查了菱形的性質,等邊三角形的判定與性質,垂線段最短,全等三角形的判定與性質等知識,關鍵是作輔助線證三角形全等.4、見解析【分析】由已知條件可得DF=AB及DF∥AB,從而可得四邊形ABFD為平行四邊形,則問題解決.【詳解】∵是的中位線∴DE∥AB,,AD=DC∴DF∥AB∵EF=DE∴DF=AB∴四邊形ABFD為平行四邊形∴AD=BF∴BF=DC【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貨檢值班員崗前持續(xù)改進考核試卷含答案
- 燈用化學配料工崗前工作改進考核試卷含答案
- 洗衣機零部件制作工QC管理模擬考核試卷含答案
- 甲基叔丁基醚丁烯-1裝置操作工風險評估與管理水平考核試卷含答案
- 老年人合法權益保護制度
- 酒店客房服務禮儀制度
- 蟲害鼠害控制制度
- 采購信息網(wǎng)絡安全與保密制度
- 濟南國網(wǎng)培訓
- 消防產品性能檢測實驗室項目環(huán)境影響報告表
- 危險化學品安全法解讀
- GB/T 7714-2025信息與文獻參考文獻著錄規(guī)則
- 信訪工作課件
- 110kV旗潘線π接入社旗陌陂110kV輸電線路施工方案(OPGW光纜)解析
- 第5章 PowerPoint 2016演示文稿制作軟件
- 基坑支護降水施工組織設計
- 預拌商品混凝土(砂漿)企業(yè)安全生產檢查表
- 焊接結構焊接應力與變形及其控制
- 中石油管道局燃氣管道施工組織設計
- YY/T 1872-2022負壓引流海綿
- GB/T 17766-1999固體礦產資源/儲量分類
評論
0/150
提交評論