2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題測(cè)試(及答案)_第1頁(yè)
2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題測(cè)試(及答案)_第2頁(yè)
2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題測(cè)試(及答案)_第3頁(yè)
2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題測(cè)試(及答案)_第4頁(yè)
2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題測(cè)試(及答案)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題測(cè)試(及答案)(1)一、解答題1.如圖,用兩個(gè)面積為的小正方形紙片剪拼成一個(gè)大的正方形.(1)大正方形的邊長(zhǎng)是________;(2)請(qǐng)你探究是否能將此大正方形紙片沿著邊的方向裁出一個(gè)面積為的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為,若能,求出這個(gè)長(zhǎng)方形紙片的長(zhǎng)和寬,若不能,請(qǐng)說(shuō)明理由.2.動(dòng)手試一試,如圖1,紙上有10個(gè)邊長(zhǎng)為1的小正方形組成的圖形紙.我們可以按圖2的虛線將它剪開(kāi)后,重新拼成一個(gè)大正方形.(1)基礎(chǔ)鞏固:拼成的大正方形的面積為_(kāi)_____,邊長(zhǎng)為_(kāi)_____;(2)知識(shí)運(yùn)用:如圖3所示,將圖2水平放置在數(shù)軸上,使得頂點(diǎn)B與數(shù)軸上的重合.以點(diǎn)B為圓心,邊為半徑畫(huà)圓弧,交數(shù)軸于點(diǎn)E,則點(diǎn)E表示的數(shù)是______;(3)變式拓展:①如圖4,給定的方格紙(每個(gè)小正方形邊長(zhǎng)為1),你能從中剪出一個(gè)面積為13的正方形嗎?若能,請(qǐng)?jiān)趫D中畫(huà)出示意圖;②請(qǐng)你利用①中圖形在數(shù)軸上用直尺和圓規(guī)表示面積為13的正方形邊長(zhǎng)所表示的數(shù).3.觀察下圖,每個(gè)小正方形的邊長(zhǎng)均為1,(1)圖中陰影部分的面積是多少?邊長(zhǎng)是多少?(2)估計(jì)邊長(zhǎng)的值在哪兩個(gè)整數(shù)之間.4.張華想用一塊面積為400cm2的正方形紙片,沿著邊的方向剪出一塊面積為300cm2的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為3:2.他不知能否裁得出來(lái),正在發(fā)愁.李明見(jiàn)了說(shuō):“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意李明的說(shuō)法嗎?張華能用這塊紙片裁出符合要求的紙片嗎?5.求下圖的方格中陰影部分正方形面積與邊長(zhǎng).二、解答題6.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大小;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說(shuō)明理由.7.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動(dòng)點(diǎn).(1)如圖1所示時(shí),試問(wèn),,滿足怎樣的數(shù)量關(guān)系?并說(shuō)明理由.(2)除了(1)的結(jié)論外,試問(wèn),,還可能滿足怎樣的數(shù)量關(guān)系?請(qǐng)畫(huà)圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫(xiě)出結(jié)論)8.如圖1,MN∥PQ,點(diǎn)C、B分別在直線MN、PQ上,點(diǎn)A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點(diǎn)E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).9.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內(nèi)一點(diǎn),連HM,HN.(1)如圖1,延長(zhǎng)HN至G,∠BMH和∠GND的角平分線相交于點(diǎn)E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點(diǎn)E.①請(qǐng)直接寫(xiě)出∠MEN與∠MHN的數(shù)量關(guān)系:;②作MP平分∠AMH,NQ∥MP交ME的延長(zhǎng)線于點(diǎn)Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運(yùn)用①中的結(jié)論)10.已知AB∥CD,線段EF分別與AB,CD相交于點(diǎn)E,F(xiàn).(1)請(qǐng)?jiān)跈M線上填上合適的內(nèi)容,完成下面的解答:如圖1,當(dāng)點(diǎn)P在線段EF上時(shí),已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過(guò)點(diǎn)P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當(dāng)點(diǎn)P,Q在線段EF上移動(dòng)時(shí)(不包括E,F(xiàn)兩點(diǎn)):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請(qǐng)說(shuō)明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請(qǐng)直接寫(xiě)出∠M,∠A與∠C的數(shù)量關(guān)系.三、解答題11.已知,將一副三角板中的兩塊直角三角板如圖1放置,,,,.(1)若三角板如圖1擺放時(shí),則______,______.(2)現(xiàn)固定的位置不變,將沿方向平移至點(diǎn)E正好落在上,如圖2所示,與交于點(diǎn)G,作和的角平分線交于點(diǎn)H,求的度數(shù);(3)現(xiàn)固定,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至與直線首次重合的過(guò)程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫(xiě)出的度數(shù).12.綜合與探究(問(wèn)題情境)王老師組織同學(xué)們開(kāi)展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng).(1)如圖1,EF∥MN,點(diǎn)A、B分別為直線EF、MN上的一點(diǎn),點(diǎn)P為平行線間一點(diǎn),請(qǐng)直接寫(xiě)出∠PAF、∠PBN和∠APB之間的數(shù)量關(guān)系;(問(wèn)題遷移)(2)如圖2,射線OM與射線ON交于點(diǎn)O,直線m∥n,直線m分別交OM、ON于點(diǎn)A、D,直線n分別交OM、ON于點(diǎn)B、C,點(diǎn)P在射線OM上運(yùn)動(dòng).①當(dāng)點(diǎn)P在A、B(不與A、B重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè)∠ADP=∠α,∠BCP=∠β.則∠CPD,∠α,∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;②若點(diǎn)P不在線段AB上運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)都不重合),請(qǐng)你畫(huà)出滿足條件的所有圖形并直接寫(xiě)出∠CPD,∠α,∠β之間的數(shù)量關(guān)系.13.如圖,兩個(gè)形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點(diǎn)P逆時(shí)針旋轉(zhuǎn).(1)①如圖1,∠DPC=度.②我們規(guī)定,如果兩個(gè)三角形只要有一組邊平行,我們就稱這兩個(gè)三角形為“孿生三角形”,如圖1,三角板BPD不動(dòng),三角板PAC從圖示位置開(kāi)始每秒10°逆時(shí)針旋轉(zhuǎn)一周(0°旋轉(zhuǎn)360°),問(wèn)旋轉(zhuǎn)時(shí)間t為多少時(shí),這兩個(gè)三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開(kāi)始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速3°/秒,同時(shí)三角板PBD的邊PB從PM處開(kāi)始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速2°/秒,在兩個(gè)三角板旋轉(zhuǎn)過(guò)程中,(PC轉(zhuǎn)到與PM重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)).設(shè)兩個(gè)三角板旋轉(zhuǎn)時(shí)間為t秒,以下兩個(gè)結(jié)論:①為定值;②∠BPN+∠CPD為定值,請(qǐng)選擇你認(rèn)為對(duì)的結(jié)論加以證明.14.如圖,直線,一副三角板(,,)按如圖①放置,其中點(diǎn)在直線上,點(diǎn)均在直線上,且平分.(1)求的度數(shù).(2)如圖②,若將三角形繞點(diǎn)以每秒的速度按逆時(shí)針?lè)较蛐D(zhuǎn)(的對(duì)應(yīng)點(diǎn)分別為).設(shè)旋轉(zhuǎn)時(shí)間為秒.①在旋轉(zhuǎn)過(guò)程中,若邊,求的值;②若在三角形繞點(diǎn)旋轉(zhuǎn)的同時(shí),三角形繞點(diǎn)以每秒的速度按順時(shí)針?lè)较蛐D(zhuǎn)(的對(duì)應(yīng)點(diǎn)分別為).請(qǐng)直接寫(xiě)出當(dāng)邊時(shí)的值.15.如圖1,D是△ABC延長(zhǎng)線上的一點(diǎn),CEAB.(1)求證:∠ACD=∠A+∠B;(2)如圖2,過(guò)點(diǎn)A作BC的平行線交CE于點(diǎn)H,CF平分∠ECD,F(xiàn)A平分∠HAD,若∠BAD=70°,求∠F的度數(shù).(3)如圖3,AHBD,G為CD上一點(diǎn),Q為AC上一點(diǎn),GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN與∠ACB的關(guān)系,說(shuō)明理由.四、解答題16.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.()若和的度數(shù)改為用字母和來(lái)表示,你能找到與和之間的關(guān)系嗎?請(qǐng)直接寫(xiě)出你發(fā)現(xiàn)的結(jié)論.17.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使∠BON=30°,如圖③,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點(diǎn)O按每秒30°的速度按逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,在第____________秒時(shí),直線MN恰好與直線CD垂直.(直接寫(xiě)出結(jié)果)18.(生活常識(shí))射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現(xiàn)象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD,光線AB與CD相交于點(diǎn)E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點(diǎn)E,∠BED=β,α與β之間滿足的等量關(guān)系是.(直接寫(xiě)出結(jié)果)19.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問(wèn)題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.20.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問(wèn)題:(1)仔細(xì)觀察,在圖2中有個(gè)以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問(wèn)∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說(shuō)明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.【參考答案】一、解答題1.(1)4;(2)不能,理由見(jiàn)解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長(zhǎng)即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長(zhǎng)方形的邊長(zhǎng),將長(zhǎng)方形的長(zhǎng)與正方形邊長(zhǎng)比較大小再解析:(1)4;(2)不能,理由見(jiàn)解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長(zhǎng)即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長(zhǎng)方形的邊長(zhǎng),將長(zhǎng)方形的長(zhǎng)與正方形邊長(zhǎng)比較大小再判斷即可.【詳解】解:(1)兩個(gè)正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長(zhǎng)是4cm;故答案為:4;(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長(zhǎng)寬之比為且面積為的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,能夠根據(jù)題意列出算式是解此題的關(guān)鍵.2.(1)10,;(2);(3)見(jiàn)解析;(4)見(jiàn)解析【分析】(1)易得10個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長(zhǎng);(2)根據(jù)大正方形的邊長(zhǎng)結(jié)合實(shí)解析:(1)10,;(2);(3)見(jiàn)解析;(4)見(jiàn)解析【分析】(1)易得10個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長(zhǎng);(2)根據(jù)大正方形的邊長(zhǎng)結(jié)合實(shí)數(shù)與數(shù)軸的關(guān)系可得結(jié)果;(3)以2×3的長(zhǎng)方形的對(duì)角線為邊長(zhǎng)即可畫(huà)出圖形;(4)得到①中正方形的邊長(zhǎng),再利用實(shí)數(shù)與數(shù)軸的關(guān)系可畫(huà)出圖形.【詳解】解:(1)∵圖1中有10個(gè)小正方形,∴面積為10,邊長(zhǎng)AD為;(2)∵BC=,點(diǎn)B表示的數(shù)為-1,∴BE=,∴點(diǎn)E表示的數(shù)為;(3)①如圖所示:②∵正方形面積為13,∴邊長(zhǎng)為,如圖,點(diǎn)E表示面積為13的正方形邊長(zhǎng).【點(diǎn)睛】本題考查了圖形的剪拼,正方形的面積,算術(shù)平方根,實(shí)數(shù)與數(shù)軸,巧妙地根據(jù)網(wǎng)格的特點(diǎn)畫(huà)出正方形是解此題的關(guān)鍵.3.(1)圖中陰影部分的面積17,邊長(zhǎng)是;(2)邊長(zhǎng)的值在4與5之間【分析】(1)由圖形可以得到陰影正方形的面積等于原來(lái)大正方形的面積減去周?chē)膫€(gè)直角三角形的面積,由正方形的面積等于邊長(zhǎng)乘以邊長(zhǎng),可解析:(1)圖中陰影部分的面積17,邊長(zhǎng)是;(2)邊長(zhǎng)的值在4與5之間【分析】(1)由圖形可以得到陰影正方形的面積等于原來(lái)大正方形的面積減去周?chē)膫€(gè)直角三角形的面積,由正方形的面積等于邊長(zhǎng)乘以邊長(zhǎng),可以得到陰影正方形的邊長(zhǎng);(2)根據(jù),可以估算出邊長(zhǎng)的值在哪兩個(gè)整數(shù)之間.【詳解】(1)由圖可知,圖中陰影正方形的面積是:5×5?=17則陰影正方形的邊長(zhǎng)為:答:圖中陰影部分的面積17,邊長(zhǎng)是(2)∵所以4<<5∴邊長(zhǎng)的值在4與5之間;【點(diǎn)睛】本題主要考查了無(wú)理數(shù)的估算及算術(shù)平方根的定義,解題主要利用了勾股定理和正方形的面積求解,有一定的綜合性,解題關(guān)鍵是無(wú)理數(shù)的估算.4.不同意,理由見(jiàn)解析.【詳解】試題分析:設(shè)面積為300平方厘米的長(zhǎng)方形的長(zhǎng)寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長(zhǎng)為20厘米,由于解析:不同意,理由見(jiàn)解析.【詳解】試題分析:設(shè)面積為300平方厘米的長(zhǎng)方形的長(zhǎng)寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長(zhǎng)為20厘米,由于>20,所以用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為3:2.試題解析:解:不同意李明的說(shuō)法.設(shè)長(zhǎng)方形紙片的長(zhǎng)為3x(x>0)cm,則寬為2xcm,依題意得:3x?2x=300,6x2=300,x2=50,∵x>0,∴x==,∴長(zhǎng)方形紙片的長(zhǎng)為cm,∵50>49,∴>7,∴>21,即長(zhǎng)方形紙片的長(zhǎng)大于20cm,由正方形紙片的面積為400cm2,可知其邊長(zhǎng)為20cm,∴長(zhǎng)方形紙片的長(zhǎng)大于正方形紙片的邊長(zhǎng).答:李明不能用這塊紙片裁出符合要求的長(zhǎng)方形紙片.點(diǎn)睛:本題考查了算術(shù)平方根的定義:一個(gè)正數(shù)的正的平方根叫這個(gè)數(shù)的算術(shù)平方根;0的算術(shù)平方根為0.也考查了估算無(wú)理數(shù)的大?。?.8;【分析】用大正方形的面積減去4個(gè)小直角三角形的面積可得到所求的正方形的面積為8,然后利用正方形面積公式求8的算術(shù)平方根即可.【詳解】解:正方形面積=4×4-4××2×2=8;正方形的邊解析:8;【分析】用大正方形的面積減去4個(gè)小直角三角形的面積可得到所求的正方形的面積為8,然后利用正方形面積公式求8的算術(shù)平方根即可.【詳解】解:正方形面積=4×4-4××2×2=8;正方形的邊長(zhǎng)==.【點(diǎn)睛】本題考查了算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.記為.二、解答題6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見(jiàn)解析.【分析】(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見(jiàn)解析.【分析】(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過(guò)B作BPHDGE,過(guò)F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過(guò)P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過(guò)B作BPHDGE,過(guò)F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過(guò)P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).7.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時(shí),;當(dāng)點(diǎn)在的右側(cè)時(shí),可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過(guò)點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;過(guò)點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時(shí),,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時(shí),,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線后能求出各個(gè)角的度數(shù),是解此題的關(guān)鍵.8.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)120°.【分析】(1)過(guò)點(diǎn)A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)解析:(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)120°.【分析】(1)過(guò)點(diǎn)A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補(bǔ)得到∴、∠CAB+∠ACD=180°,由鄰補(bǔ)角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過(guò)點(diǎn)A作AD∥MN,∵M(jìn)N∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準(zhǔn)確的推導(dǎo)是解決本題的關(guān)鍵.9.(1)見(jiàn)解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過(guò)點(diǎn)E作EP∥AB交MH于點(diǎn)Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等即解析:(1)見(jiàn)解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過(guò)點(diǎn)E作EP∥AB交MH于點(diǎn)Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等即可得證.(2)①過(guò)點(diǎn)H作GI∥AB,利用(1)中結(jié)論2∠MEN﹣∠MHN=180°,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進(jìn)而用等量代換得出2∠MEN+∠MHN=360°.②過(guò)點(diǎn)H作HT∥MP,由①的結(jié)論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質(zhì)及鄰補(bǔ)角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過(guò)點(diǎn)E作EP∥AB交MH于點(diǎn)Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內(nèi)錯(cuò)角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過(guò)點(diǎn)H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結(jié)論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過(guò)點(diǎn)H作HT∥MP.如答圖2∵M(jìn)P∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∵M(jìn)P平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),鄰補(bǔ)角,等量代換,角之間的數(shù)量關(guān)系運(yùn)算,輔助線的作法,正確作出輔助線是解題的關(guān)鍵,本題綜合性較強(qiáng).10.(1)兩直線平行,內(nèi)錯(cuò)角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見(jiàn)解答過(guò)程;②3∠PMQ+∠A+∠C=360°.解析:(1)兩直線平行,內(nèi)錯(cuò)角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見(jiàn)解答過(guò)程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質(zhì)即可完成填空;(2)結(jié)合(1)的輔助線方法即可完成證明;(3)結(jié)合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關(guān)系.【詳解】解:過(guò)點(diǎn)P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯(cuò)角相等;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯(cuò)角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過(guò)點(diǎn)P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過(guò)點(diǎn)P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點(diǎn)睛】考核知識(shí)點(diǎn):平行線的判定和性質(zhì).熟練運(yùn)用平行線性質(zhì)和判定,添加適當(dāng)輔助線是關(guān)鍵.三、解答題11.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當(dāng)B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當(dāng)BC∥DE時(shí),當(dāng)BC∥EF時(shí),當(dāng)BC∥DF時(shí),三種情況進(jìn)行解答即可.【詳解】解:(1)作EI∥PQ,如圖,∵PQ∥MN,則PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α=DEA-∠BAC=60°-45°=15°,∵E、C、A三點(diǎn)共線,∴∠β=180°-∠DFE=180°-30°=150°;故答案為:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,F(xiàn)H分別平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)當(dāng)BC∥DE時(shí),如圖1,∵∠D=∠C=90,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;當(dāng)BC∥EF時(shí),如圖2,此時(shí)∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;當(dāng)BC∥DF時(shí),如圖3,此時(shí),AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.綜上所述,∠BAM的度數(shù)為30°或90°或120°.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).12.(1)∠PAF+∠PBN+∠APB=360°;(2)①,見(jiàn)解析;②或【分析】(1)作PC∥EF,如圖1,由PC∥EF,EF∥MN得到PC∥MN,根據(jù)平行線的性質(zhì)得∠PAF+∠APC=180°,∠解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,見(jiàn)解析;②或【分析】(1)作PC∥EF,如圖1,由PC∥EF,EF∥MN得到PC∥MN,根據(jù)平行線的性質(zhì)得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;(2)①過(guò)P作PE∥AD交ON于E,根據(jù)平行線的性質(zhì),可得到,,于是;②分兩種情況:當(dāng)P在OB之間時(shí);當(dāng)P在OA的延長(zhǎng)線上時(shí),仿照①的方法即可解答.【詳解】解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:作PC∥EF,如圖1,∵PC∥EF,EF∥MN,∴PC∥MN,∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°,∴∠PAF+∠APC+∠PBN+∠CPB=360°,∴∠PAF+∠PBN+∠APB=360°;(2)①,理由如下:如答圖,過(guò)P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴②當(dāng)P在OB之間時(shí),,理由如下:如備用圖1,過(guò)P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴;當(dāng)P在OA的延長(zhǎng)線上時(shí),,理由如下:如備用圖2,過(guò)P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴;綜上所述,∠CPD,∠α,∠β之間的數(shù)量關(guān)系是或.【點(diǎn)睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ).難點(diǎn)是分類討論作平行輔助線.13.(1)①90;②t為或或或或或或;(2)①正確,②錯(cuò)誤,證明見(jiàn)解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時(shí),有兩種情況,畫(huà)出符合題意的圖形,利用平行線的性質(zhì)與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯(cuò)誤,證明見(jiàn)解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時(shí),有兩種情況,畫(huà)出符合題意的圖形,利用平行線的性質(zhì)與角的和差求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),有兩種情況,畫(huà)出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),有兩種情況,畫(huà)出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),畫(huà)出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí)的旋轉(zhuǎn)時(shí)間與相同;(2)分兩種情況討論:當(dāng)在上方時(shí),當(dāng)在下方時(shí),①分別用含的代數(shù)式表示,從而可得的值;②分別用含的代數(shù)式表示,得到是一個(gè)含的代數(shù)式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當(dāng)BD∥PC時(shí),∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為3秒;如圖1﹣2,當(dāng)PC∥BD時(shí),∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為180°+30°=210°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為21秒,如圖1﹣3,當(dāng)PA∥BD時(shí),即點(diǎn)D與點(diǎn)C重合,此時(shí)∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為90°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為9秒,如圖1﹣4,當(dāng)PA∥BD時(shí),∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為90°+180°=270°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為27秒,如圖1﹣5,當(dāng)AC∥DP時(shí),∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為60°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為6秒,如圖1﹣6,當(dāng)時(shí),∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為秒,如圖1﹣7,當(dāng)AC∥BD時(shí),∵AC∥BD,∴∠DBP=∠BAC=90°,∴點(diǎn)A在MN上,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為180°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為18秒,當(dāng)時(shí),如圖1-3,1-4,旋轉(zhuǎn)時(shí)間分別為:,綜上所述:當(dāng)t為或或或或或或時(shí),這兩個(gè)三角形是“孿生三角形”;(2)如圖,當(dāng)在上方時(shí),①正確,理由如下:設(shè)運(yùn)動(dòng)時(shí)間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時(shí)間在變化,不為定值,結(jié)論錯(cuò)誤.當(dāng)在下方時(shí),如圖,①正確,理由如下:設(shè)運(yùn)動(dòng)時(shí)間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時(shí)間在變化,不為定值,結(jié)論錯(cuò)誤.綜上:①正確,②錯(cuò)誤.【點(diǎn)睛】本題考查的是角的和差倍分關(guān)系,平行線的性質(zhì)與判定,角的動(dòng)態(tài)定義(旋轉(zhuǎn)角)的理解,掌握分類討論的思想是解題的關(guān)鍵.14.(1)60°;(2)①6s;②s或s【分析】(1)利用平行線的性質(zhì)角平分線的定義即可解決問(wèn)題.(2)①首先證明∠GBC=∠DCN=30°,由此構(gòu)建方程即可解決問(wèn)題.②分兩種情形:如圖③中,當(dāng)解析:(1)60°;(2)①6s;②s或s【分析】(1)利用平行線的性質(zhì)角平分線的定義即可解決問(wèn)題.(2)①首先證明∠GBC=∠DCN=30°,由此構(gòu)建方程即可解決問(wèn)題.②分兩種情形:如圖③中,當(dāng)BG∥HK時(shí),延長(zhǎng)KH交MN于R.根據(jù)∠GBN=∠KRN構(gòu)建方程即可解決問(wèn)題.如圖③-1中,當(dāng)BG∥HK時(shí),延長(zhǎng)HK交MN于R.根據(jù)∠GBN+∠KRM=180°構(gòu)建方程即可解決問(wèn)題.【詳解】解:(1)如圖①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∴∠ECN=∠ACN=75°,∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如圖②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋轉(zhuǎn)過(guò)程中,若邊BG∥CD,t的值為6s.②如圖③中,當(dāng)BG∥HK時(shí),延長(zhǎng)KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=s.如圖③-1中,當(dāng)BG∥HK時(shí),延長(zhǎng)HK交MN于R.∵BG∥KR,∴∠GBN+∠KRM=180°,∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,∴∠KRM=90°-(180°-60°-4t)=4t-30°,∴5t+4t-30°=180°,∴t=s.綜上所述,滿足條件的t的值為s或s.【點(diǎn)睛】本題考查幾何變換綜合題,考查了平行線的性質(zhì),旋轉(zhuǎn)變換,角平分線的定義等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)用分類討論的思想思考問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,屬于中考?jí)狠S題.15.(1)證明見(jiàn)解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見(jiàn)解析.【分析】(1)首先根據(jù)平行線的性質(zhì)得出∠ACE=∠A,∠ECD=∠B,然后通過(guò)等量代換即可得出答案;(2)首先根據(jù)角解析:(1)證明見(jiàn)解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見(jiàn)解析.【分析】(1)首先根據(jù)平行線的性質(zhì)得出∠ACE=∠A,∠ECD=∠B,然后通過(guò)等量代換即可得出答案;(2)首先根據(jù)角平分線的定義得出∠FCD=∠ECD,∠HAF=∠HAD,進(jìn)而得出∠F=(∠HAD+∠ECD),然后根據(jù)平行線的性質(zhì)得出∠HAD+∠ECD的度數(shù),進(jìn)而可得出答案;(3)根據(jù)平行線的性質(zhì)及角平分線的定義得出,,,再通過(guò)等量代換即可得出∠MQN=∠ACB.【詳解】解:(1)∵CEAB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,F(xiàn)A平分∠HAD,∴∠FCD=∠ECD,∠HAF=∠HAD,∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD),∵CHAB,∴∠ECD=∠B,∵AHBC,∴∠B+∠HAB=180°,∵∠BAD=70°,,∴∠F=(∠B+∠HAD)=55°;(3)∠MQN=∠ACB,理由如下:平分,.平分,.,.∴∠MQN=∠MQG﹣∠NQG=180°﹣∠QGR﹣∠NQG=180°﹣(∠AQG+∠QGD)=180°﹣(180°﹣∠CQG+180°﹣∠QGC)=(∠CQG+∠QGC)=∠ACB.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和角平分線的定義,掌握平行線的性質(zhì)和角平分線的定義是解題的關(guān)鍵.四、解答題16.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問(wèn)利用即可得出答案,第4問(wèn)利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.17.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)即可求出∠CEN的度數(shù).(3)畫(huà)出圖形,求出在MN⊥CD時(shí)的旋轉(zhuǎn)角,再除以30°即得結(jié)果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時(shí),旋轉(zhuǎn)角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時(shí),直線MN恰好與直線CD垂直.【點(diǎn)睛】本題以學(xué)生熟悉的三角板為載體,考查了三角形的內(nèi)角和、平行線的判定和性質(zhì)、垂直的定義和旋轉(zhuǎn)的性質(zhì),前兩小題難度不大,難點(diǎn)是第(3)小題,解題的關(guān)鍵是畫(huà)出適合題意的幾何圖形,弄清求旋轉(zhuǎn)角的思路和方法,本題的第一種情況是將旋轉(zhuǎn)角∠DOM放在四邊形DOMF中,用四邊形內(nèi)角和求解,第二種情況是用周角減去∠DOM的度數(shù).18.【現(xiàn)象解釋】見(jiàn)解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現(xiàn)象解釋】見(jiàn)解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據(jù)三角形內(nèi)角和定理求得∠2+∠3=125°,根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據(jù)三角形內(nèi)角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質(zhì)∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現(xiàn)象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論