版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
初三考試數(shù)學(xué)復(fù)習(xí)試卷含答案一、壓軸題1.對(duì)定義一種新運(yùn)算,規(guī)定:(其中均為非零常數(shù)).例如:.(1)已知.①求的值;②若關(guān)于的不等式組恰好有3個(gè)整數(shù)解,求的取值范圍;(2)當(dāng)時(shí),對(duì)任意有理數(shù)都成立,請(qǐng)直接寫(xiě)出滿足的關(guān)系式.學(xué)習(xí)參考:①,即單項(xiàng)式乘以多項(xiàng)式就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的結(jié)果相加;②,即多項(xiàng)式乘以多項(xiàng)式就是用一個(gè)多項(xiàng)式的每一項(xiàng)去乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的結(jié)果相加.解析:(1)①;②42≤a<54;(2)m=2n【解析】【分析】(1)①構(gòu)建方程組即可解決問(wèn)題;②根據(jù)不等式即可解決問(wèn)題;(2)利用恒等式的性質(zhì),根據(jù)關(guān)系式即可解決問(wèn)題.【詳解】解:(1)①由題意得,解得,②由題意得,解不等式①得p>-1.解不等式②得p≤,∴-1<p≤,∵恰好有3個(gè)整數(shù)解,∴2≤<3.∴42≤a<54;(2)由題意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵對(duì)任意有理數(shù)x,y都成立,∴m=2n.【點(diǎn)睛】本題考查一元一次不等式、二元一次方程組、恒等式等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考常考題型.2.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.解析:(1)①70;②∠F=∠BED,證明見(jiàn)解析;(2)2∠F+∠BED=360°;(3)【解析】【分析】(1)①過(guò)F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過(guò)E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說(shuō)明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過(guò)對(duì)的計(jì)算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過(guò)F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過(guò)E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.3.如圖,在中,為的中點(diǎn),,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是.(1)在運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),求出的值;(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)時(shí),求出的值;(3)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.解析:(1)時(shí),點(diǎn)位于線段的垂直平分線上;(2);(3)不存在,理由見(jiàn)解析.【解析】【分析】(1)根據(jù)題意求出BP,CQ,結(jié)合圖形用含t的代數(shù)式表示CP的長(zhǎng)度,根據(jù)線段垂直平分線的性質(zhì)得到CP=CQ,列式計(jì)算即可;(2)根據(jù)全等三角形的對(duì)應(yīng)邊相等列式計(jì)算;(3)根據(jù)全等三角形的對(duì)應(yīng)邊相等列式計(jì)算,判斷即可.【詳解】解:(1)由題意得,則,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),,∴,解得,,則當(dāng)時(shí),點(diǎn)位于線段的垂直平分線上;(2)∵為的中點(diǎn),,∴,∵,∴,∴,解得,,則當(dāng)時(shí),;(3)不存在,∵,∴,則解得,,,∴不存在某一時(shí)刻,使.【點(diǎn)睛】本題考查的是幾何動(dòng)點(diǎn)運(yùn)動(dòng)問(wèn)題、全等三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì),掌握全等三角形的對(duì)應(yīng)邊相等是解題的關(guān)鍵.4.(1)發(fā)現(xiàn):如圖1,的內(nèi)角的平分線和外角的平分線相交于點(diǎn)。①當(dāng)時(shí),則②當(dāng)時(shí),求的度數(shù)(用含的代數(shù)式表示)﹔(2)應(yīng)用:如圖2,直線與直線垂直相交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),延長(zhǎng)至,已知的角平分線與的角平分線所在的直線相交于,在中,如果一個(gè)角是另一個(gè)角的倍,請(qǐng)直接寫(xiě)出的度數(shù).解析:(1)①25°;②;(2).【解析】【分析】(1)①利用外角和性質(zhì)∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,再利用角平分線的定義進(jìn)行等量代換即可;②與①同理可得;(2)根據(jù)題意分情況進(jìn)行討論,用到(1)的結(jié)論計(jì)算即可【詳解】(1)①∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,∵OB、OC分別平分∠ABC、∠ACD,∴∠ACD=2∠OCD,∠ABC=2∠OBC,∴2∠OCD=2∠OBC+∠A,∴∠A=2∠BOC,∵∠A=50°,∴∠BOC=∠A=25°,故填:25°;②,且平分平分(2)的角平分線與的角平分線所在的直線相交于,符合題意的情況有兩種:①根據(jù)(1)可知:②根據(jù)(1)可知:【點(diǎn)睛】本題考查三角形外角和的性質(zhì)、角平分線的定義,利用分類(lèi)討論的數(shù)學(xué)思想是關(guān)鍵.5.小敏與同桌小穎在課下學(xué)習(xí)中遇到這樣一道數(shù)學(xué)題:“如圖(1),在等邊三角形中,點(diǎn)在上,點(diǎn)在的延長(zhǎng)線上,且,試確定線段與的大小關(guān)系,并說(shuō)明理由”.小敏與小穎討論后,進(jìn)行了如下解答:(1)取特殊情況,探索討論:當(dāng)點(diǎn)為的中點(diǎn)時(shí),如圖(2),確定線段與的大小關(guān)系,請(qǐng)你寫(xiě)出結(jié)論:_____(填“”,“”或“”),并說(shuō)明理由.(2)特例啟發(fā),解答題目:解:題目中,與的大小關(guān)系是:_____(填“”,“”或“”).理由如下:如圖(3),過(guò)點(diǎn)作EF∥BC,交于點(diǎn).(請(qǐng)你將剩余的解答過(guò)程完成)(3)拓展結(jié)論,設(shè)計(jì)新題:在等邊三角形中,點(diǎn)在直線上,點(diǎn)在直線上,且,若△的邊長(zhǎng)為,,求的長(zhǎng)(請(qǐng)你畫(huà)出圖形,并直接寫(xiě)出結(jié)果).解析:(1),理由詳見(jiàn)解析;(2),理由詳見(jiàn)解析;(3)3或1【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)、三線合一的性質(zhì)證明即可;(2)根據(jù)等邊三角形的性質(zhì),證明△≌△即可;(3)注意區(qū)分當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí)和當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí)兩種情況,不要遺漏.【詳解】解:(1),理由如下:,∵△是等邊三角形,,點(diǎn)為的中點(diǎn),,,,,,;故答案為:;(2),理由如下:如圖3:∵△為等邊三角形,且EF∥BC,,,;;,,,在△與△中,,∴△≌△(AAS),,∴△為等邊三角形,,.(3)①如圖4,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),過(guò)點(diǎn)作EF∥BC,交的延長(zhǎng)線于點(diǎn):則,;,;∵△為等邊三角形,,,,;而,,;在△和△中,,∴△≌△(AAS),;∵△為等邊三角形,,,;②如圖5,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),過(guò)點(diǎn)作EF∥BC,交的延長(zhǎng)線于點(diǎn):類(lèi)似上述解法,同理可證:,,.【點(diǎn)睛】本題考查等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì).熟練掌握等邊三角形的性質(zhì),構(gòu)造合適的全等三角形是解題的關(guān)鍵.6.如圖1,我們定義:在四邊形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,則把四邊形ABCD叫做互補(bǔ)等對(duì)邊四邊形.(1)如圖2,在等腰中,AE=BE,四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,求證:∠ABD=∠BAC=∠AEB.(2)如圖3,在非等腰中,若四邊形ABCD仍是互補(bǔ)等對(duì)邊四邊形,試問(wèn)∠ABD=∠BAC=∠AEB是否仍然成立?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.解析:(1)見(jiàn)解析;(2)仍然成立,見(jiàn)解析【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和互補(bǔ)等對(duì)邊四邊形的定義可利用SAS證明△ABD≌△BAC,可得∠ADB=∠BCA,從而可推出∠ADB=∠BCA=90°,然后在△ABE中,根據(jù)三角形的內(nèi)角和定理和直角三角形的性質(zhì)可得∠ABD=∠AEB,進(jìn)一步可得結(jié)論;(2)如圖3所示:過(guò)點(diǎn)A、B分別作BD的延長(zhǎng)線與AC的垂線,垂足分別為G,F(xiàn),根據(jù)互補(bǔ)等對(duì)邊四邊形的定義可利用AAS證明△AGD≌△BFC,可得AG=BF,進(jìn)一步即可根據(jù)HL證明Rt△ABG≌Rt△BAF,可得∠ABD=∠BAC,由互補(bǔ)等對(duì)邊四邊形的定義、平角的定義和四邊形的內(nèi)角和可得∠AEB+∠DHC=180°,進(jìn)而可得∠AEB=∠BHC,再根據(jù)三角形的外角性質(zhì)即可推出結(jié)論.【詳解】(1)證明:∵AE=BE,∴∠EAB=∠EBA,∵四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,∴AD=BC,在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA=(180°?∠AEB)=90°?∠AEB,∴∠ABD=90°?∠EAB=90°?(90°?∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)∠ABD=∠BAC=∠AEB仍然成立;理由如下:如圖3所示:過(guò)點(diǎn)A、B分別作BD的延長(zhǎng)線與AC的垂線,垂足分別為G,F(xiàn),∵四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+∠ADG=180°,∴∠BCA=∠ADG,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∠AGD=∠BFC,∠ADG=∠BCA,AD=BC∴△AGD≌△BFC(AAS),∴AG=BF,在Rt△ABG和Rt△BAF中,∴Rt△ABG≌Rt△BAF(HL),∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.【點(diǎn)睛】本題以新定義互補(bǔ)等對(duì)邊四邊形為載體,主要考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形的內(nèi)角和定理與三角形的外角性質(zhì)以及四邊形的內(nèi)角和等知識(shí),正確添加輔助線、熟練掌握上述知識(shí)是解題的關(guān)鍵.7.?dāng)?shù)學(xué)活動(dòng)課上,老師出了這樣一個(gè)題目:“已知:于,點(diǎn)、分別在和上,作線段和(如圖1),使.求證:”.(1)聰聰同學(xué)給出一種證明問(wèn)題的輔助線:如圖2,過(guò)作,交于.請(qǐng)你根據(jù)聰聰同學(xué)提供的輔助線(或自己添加其它輔助線),給出問(wèn)題的證明.(2)若點(diǎn)在直線下方,且知,直接寫(xiě)出和之間的數(shù)量關(guān)系.解析:(1)見(jiàn)解析;(2)【解析】【分析】(1)根據(jù)聰聰提供的輔助線作法進(jìn)行證明,先由平行線的性質(zhì)得:,,再證明,可得結(jié)論;(2)根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)可得結(jié)論.【詳解】解:(1)證明:如圖2,過(guò)作,交于,,,,,,,,;(2)解:,理由如下:如圖3,,,,,,∴.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和判定以及三角形外角性質(zhì)的運(yùn)用,熟練掌握平行線的性質(zhì)和判定是解決問(wèn)題的關(guān)鍵.8.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過(guò)D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說(shuō)明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接寫(xiě)出比值.解析:(1)互相平行;(2)35,20;(3)見(jiàn)解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.9.如圖1.在△ABC中,∠ACB=90°,AC=BC=10,直線DE經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A,B分別作AD⊥DE,BE⊥DE,垂足分別為點(diǎn)D和E,AD=8,BE=6.(1)①求證:△ADC≌△CEB;②求DE的長(zhǎng);(2)如圖2,點(diǎn)M以3個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)C出發(fā)沿著邊CA運(yùn)動(dòng),到終點(diǎn)A,點(diǎn)N以8個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)B出發(fā)沿著線BC—CA運(yùn)動(dòng),到終點(diǎn)A.M,N兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒(t>0),當(dāng)點(diǎn)N到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)M作PM⊥DE于點(diǎn)P,過(guò)點(diǎn)N作QN⊥DE于點(diǎn)Q;①當(dāng)點(diǎn)N在線段CA上時(shí),用含有t的代數(shù)式表示線段CN的長(zhǎng)度;②當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)N重合;③當(dāng)△PCM與△QCN全等時(shí),則t=.解析:(1)①證明見(jiàn)解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先證明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性質(zhì)得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①當(dāng)點(diǎn)N在線段CA上時(shí),根據(jù)CN=CN?BC即可得出答案;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得t=2即可;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,則CM=CN,得3t=10?8t,解得t=1011;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,則3t=8t?10,解得t=2;即可得出答案.【詳解】(1)①證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①當(dāng)點(diǎn)N在線段CA上時(shí),如圖3所示:CN=CN?BC=8t?10;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得:t=2,∴當(dāng)t為2秒時(shí),點(diǎn)M與點(diǎn)N重合;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,∴CM=CN,∴3t=10?8t,解得:t=;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,點(diǎn)M與N重合,CM=CN,則3t=8t?10,解得:t=2;綜上所述,當(dāng)△PCM與△QCN全等時(shí),則t等于s或2s,故答案為:s或2s.【點(diǎn)睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、直角三角形的性質(zhì)、分類(lèi)討論等知識(shí);本題綜合性強(qiáng),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.10.某校七年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點(diǎn)E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點(diǎn)Q,請(qǐng)你寫(xiě)出∠BQC與∠A的數(shù)量關(guān)系,并說(shuō)明理由;(4)如圖4,△ABC外角∠CBM、∠BCN的平分線交于點(diǎn)Q,∠A=64°,∠CBQ,∠BCQ的平分線交于點(diǎn)P,則∠BPC=゜,延長(zhǎng)BC至點(diǎn)E,∠ECQ的平分線與BP的延長(zhǎng)線相交于點(diǎn)R,則∠R=゜.解析:(1)122°;(2);(3);(4)119,29;【解析】【分析】(1)根據(jù)三角形的內(nèi)角和角平分線的定義;(2)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,用與表示出,再利用與表示出,于是得到結(jié)論;(3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及角平分線的定義表示出與,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解;(4)根據(jù)(1),(3)的結(jié)論可以得出∠BPC的度數(shù);根據(jù)(2)的結(jié)論可以得到∠R的度數(shù).【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)如圖2示,和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論.(4)由(3)可知,,再根據(jù)(1),可得;由(2)可得:;故答案為:119,29.【點(diǎn)睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.11.在等邊△ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時(shí)出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點(diǎn)時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過(guò)t分鐘后,它們分別爬行到D、E處,請(qǐng)問(wèn):(1)如圖1,在爬行過(guò)程中,CD和BE始終相等嗎,請(qǐng)證明?(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長(zhǎng)線爬行”,EB與CD交于點(diǎn)Q,其他條件不變,蝸牛爬行過(guò)程中∠CQE的大小保持不變,請(qǐng)利用圖2說(shuō)明:∠CQE=60°;(3)如果將原題中“由C向A爬行”改為“沿著B(niǎo)C的延長(zhǎng)線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過(guò)程中,證明:DF=EF解析:(1)相等,證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.【解析】【分析】(1)先證明△ACD≌△CBE,再由全等三角形的性質(zhì)即可證得CD=BE;(2)先證明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如圖3,過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G,根據(jù)等邊三角形的三邊相等,可以證得AD=DG=CE;進(jìn)而證明△DGF和△ECF全等,最后根據(jù)全等三角形的性質(zhì)即可證明.【詳解】(1)解:CD和BE始終相等,理由如下:如圖1,AB=BC=CA,兩只蝸牛速度相同,且同時(shí)出發(fā),∴CE=AD,∠A=∠BCE=60°在△ACD與△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始終相等;(2)證明:根據(jù)題意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等邊三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行過(guò)程中,DF始終等于EF是正確的,理由如下:如圖,過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG為等邊三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì)和等邊三角形的性質(zhì);題弄懂題中所給的信息,再根據(jù)所提供的思路尋找證明條件是解答本題的關(guān)鍵.12.請(qǐng)按照研究問(wèn)題的步驟依次完成任務(wù).(問(wèn)題背景)(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說(shuō)理證明∠A+∠B=∠C+∠D.(簡(jiǎn)單應(yīng)用)(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問(wèn)題(1)中的結(jié)論)(問(wèn)題探究)(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為;(拓展延伸)(4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問(wèn)∠P與∠C、∠B之間的數(shù)量關(guān)系為(用x、y表示∠P);(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關(guān)系,直接寫(xiě)出結(jié)論.解析:(1)見(jiàn)解析;(2)∠P=23o;(3)∠P=26o;(4)∠P=;(5)∠P=.【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理即可證明;(2)如圖2,根據(jù)角平分線的性質(zhì)得到∠1=∠2,∠3=∠4,列方程組即可得到結(jié)論;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解決問(wèn)題;(4)根據(jù)題意得出∠B+∠CAB=∠C+∠BDC,再結(jié)合∠CAP=∠CAB,∠CDP=∠CDB,得到y(tǒng)+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),從而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根據(jù)題意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再結(jié)合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【詳解】解:(1)證明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如圖2,∵AP、CP分別平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的結(jié)論得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如圖3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案為:26°;(4)由題意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案為:∠P=;(5)由題意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案為:∠P=.【點(diǎn)睛】本題考查三角形內(nèi)角和,三角形的外角的性質(zhì)、多邊形的內(nèi)角和等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用方程組的思想思考問(wèn)題,屬于中考常考題型.13.如圖,在等邊中,線段為邊上的中線.動(dòng)點(diǎn)在直線上時(shí),以為一邊在的下方作等邊,連結(jié).(1)求的度數(shù);(2)若點(diǎn)在線段上時(shí),求證:;(3)當(dāng)動(dòng)點(diǎn)在直線上時(shí),設(shè)直線與直線的交點(diǎn)為,試判斷是否為定值?并說(shuō)明理由.解析:(1)30°;(2)證明見(jiàn)解析;(3)是定值,.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)可以直接得出結(jié)論;(2)根據(jù)等邊三角形的性質(zhì)就可以得出,,,,由等式的性質(zhì)就可以,根據(jù)就可以得出;(3)分情況討論:當(dāng)點(diǎn)在線段上時(shí),如圖1,由(2)可知,就可以求出結(jié)論;當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖2,可以得出而有而得出結(jié)論;當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖3,通過(guò)得出同樣可以得出結(jié)論.【詳解】(1)是等邊三角形,.線段為邊上的中線,,.(2)與都是等邊三角形,,,,,.在和中,;(3)是定值,,理由如下:①當(dāng)點(diǎn)在線段上時(shí),如圖1,由(2)可知,則,又,,是等邊三角形,線段為邊上的中線平分,即.②當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖2,與都是等邊三角形,,,,,,在和中,,,同理可得:,.③當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),與都是等邊三角形,,,,,,在和中,,,同理可得:,∵,.綜上,當(dāng)動(dòng)點(diǎn)在直線上時(shí),是定值,.【點(diǎn)睛】此題考查等邊三角形的性質(zhì),全等三角形的判定及性質(zhì),等邊三角形三線合一的性質(zhì),解題中注意分類(lèi)討論的思想解題.14.(閱讀材科)小明同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的項(xiàng)角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組全等的三角形,小明把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點(diǎn)O,連接AO,下列結(jié)論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有.(將所有正確的序號(hào)填在橫線上).(延伸應(yīng)用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關(guān)系.解析:(1)證明見(jiàn)解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性質(zhì)得出∠BAD=∠CAE,即可得出結(jié)論;(2)同(1)的方法判斷出△ABD≌△ACE,得出BD=CE,再利用對(duì)頂角和三角形的內(nèi)角和定理判斷出∠BOC=60°,再判斷出△BCF≌△ACO,得出∠AOC=120°,進(jìn)而得出∠AOE=60°,再判斷出BF<CF,進(jìn)而判斷出∠OBC>30°,即可得出結(jié)論;(3)先判斷出△BDP是等邊三角形,得出BD=BP,∠DBP=60°,進(jìn)而判斷出△ABD≌△CBP(SAS),即可得出結(jié)論.【詳解】(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如圖2,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正確,∠ADB=∠AEC,記AD與CE的交點(diǎn)為G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正確,在OB上取一點(diǎn)F,使OF=OC,∴△OCF是等邊三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正確,連接AF,要使OC=OE,則有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而沒(méi)辦法判斷∠OBC大于30度,所以,④不一定正確,即:正確的有①②③,故答案為①②③;(3)如圖3,延長(zhǎng)DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等邊三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【點(diǎn)睛】此題考查三角形綜合題,等腰三角形的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),構(gòu)造等邊三角形是解題的關(guān)鍵.15.在中,,,是的角平分線,于點(diǎn).(1)如圖1,連接,求證:是等邊三角形;(2)如圖2,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn)重合),以為一邊,在下方作,交延長(zhǎng)線于點(diǎn).求證:;(3)如圖3,點(diǎn)是線段上的點(diǎn),以為一邊,在的下方作,交延長(zhǎng)線于點(diǎn).直接寫(xiě)出,與數(shù)量之間的關(guān)系.解析:(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)結(jié)論:,證明見(jiàn)解析.【解析】【分析】(1)先根據(jù)直角三角形的性質(zhì)得出,再根據(jù)角平分線的性質(zhì)可得,然后根據(jù)三角形的判定定理與性質(zhì)可得,最后根據(jù)等邊三角形的判定即可得證;(2)如圖(見(jiàn)解析),延長(zhǎng)ED使得,連接MF,先根據(jù)直角三角形的性質(zhì)、等邊三角形的判定得出是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證;(3)如圖(見(jiàn)解析),參照題(2),先證是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證.【詳解】(1)是的角平分線,在和中,是等邊三角形;(2)如圖,延長(zhǎng)ED使得,連接MF,是的角平分線,是等邊三角形,即在和中,,即即;(3)結(jié)論:,證明過(guò)程如下:如圖,延長(zhǎng)BD使得,連接NH由(2)可知,是等邊三角形,即在和中,,即即.【點(diǎn)睛】本題考查了直角三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2)和(3),通過(guò)作輔助線,構(gòu)造一個(gè)等邊三角形是解題關(guān)鍵.二、選擇題16.若,則()A. B. C. D.解析:D【解析】【分析】根據(jù)選項(xiàng)進(jìn)行一一排除即可得出正確答案.【詳解】解:A中、,可得,故A錯(cuò);B中、,可得出,故B錯(cuò);C中、,可得出,故C錯(cuò);D中、,交叉相乘得到,故D對(duì).故答案為:D.【點(diǎn)睛】本題考查等式的性質(zhì)及比例的性質(zhì),熟練掌握性質(zhì)定理是解題的關(guān)鍵.17.2019年6月21日甬臺(tái)溫高速溫嶺聯(lián)絡(luò)線工程初步設(shè)計(jì)通過(guò),本項(xiàng)目為沿海高速和甬臺(tái)溫高速公路之間的主要聯(lián)絡(luò)通道,總投資1289000000元,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.0.1289×10 B.1.289×10C.1.289×10 D.1289×10解析:C【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:1289000000元,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為1.289×109.故選:C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.18.有理數(shù)a,b在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則下列各式成立的是()A.a(chǎn)>b B.﹣ab<0 C.|a|<|b| D.a(chǎn)<﹣b解析:D【解析】【分析】根據(jù)各點(diǎn)在數(shù)軸上的位置得出a、b兩點(diǎn)到原點(diǎn)距離的大小,進(jìn)而可得出結(jié)論.【詳解】解:∵由圖可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故選:D.【點(diǎn)睛】本題考查的是數(shù)軸,熟知數(shù)軸上兩點(diǎn)間的距離公式是解答此題的關(guān)鍵.19.把一根木條固定在墻面上,至少需要兩枚釘子,這樣做的數(shù)學(xué)依據(jù)是()A.兩點(diǎn)之間線段最短B.兩點(diǎn)確定一條直線C.垂線段最短D.兩點(diǎn)之間直線最短解析:B【解析】因?yàn)閮牲c(diǎn)確定一條直線,所以把一根木條固定在墻面上,至少需要兩枚釘子故選B.20.已知線段AB的長(zhǎng)為4,點(diǎn)C為AB的中點(diǎn),則線段AC的長(zhǎng)為()A.1 B.2 C.3 D.4解析:B【解析】【分析】根據(jù)線段中點(diǎn)的性質(zhì),可得AC的長(zhǎng).【詳解】解:由線段中點(diǎn)的性質(zhì),得AC=AB=2.故選B.【點(diǎn)睛】本題考查了兩點(diǎn)間的距離,利用了線段中點(diǎn)的性質(zhì).21.對(duì)于方程,去分母后得到的方程是()A. B. C. D.解析:D【解析】【分析】方程兩邊同乘以6即可求解.【詳解】,方程兩邊同乘以6可得,2x-6=3(1+2x).故選D.【點(diǎn)睛】本題考查了一元一次方程的解法—去分母,方程兩邊同乘以各分母的最小公倍數(shù)是去分母的基本方法.22.計(jì)算的結(jié)果是()A.-8 B.8 C.2 D.-2解析:C【解析】【分析】根據(jù)有理數(shù)加法法則計(jì)算即可得答案.【詳解】=-=2故選:C.【點(diǎn)睛】本題考查有理數(shù)加法,同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;互為相反數(shù)的兩個(gè)數(shù)相加得0;一個(gè)數(shù)與0相加,仍得這個(gè)數(shù);熟練掌握有理數(shù)加法法則是解題關(guān)鍵.23.一張普通A4紙的厚度約為0.000104m,用科學(xué)計(jì)數(shù)法可表示為()mA. B. C. D.解析:C【解析】【分析】絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】解:0.000104=1.04×10?4.故選:C.【點(diǎn)睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.24.若多項(xiàng)式是完全平方式,則常數(shù)m的值為()A.3 B.-3 C.±3 D.+6解析:C【解析】【分析】利用完全平方式的結(jié)構(gòu)特征即可求出m的值.【詳解】解:∵多項(xiàng)式是完全平方式,∴2m=±6,解得:m=±3,故選:C.【點(diǎn)睛】此題考查了完全平方式,熟練掌握完全平方公式的結(jié)構(gòu)特征是解本題的關(guān)鍵.25.如圖,已知直線,點(diǎn)分別在直線上,連結(jié).點(diǎn)D是直線之間的一個(gè)動(dòng)點(diǎn),作交直線b于點(diǎn)C,連結(jié).若,則下列選項(xiàng)中不可能取到的度數(shù)為()A.60° B.80° C.150° D.170°解析:A【解析】【分析】延長(zhǎng)CD交直線a于E.由∠ADC=∠AED+∠DAE,判斷出∠ADC>70°即可解決問(wèn)題.【詳解】解:延長(zhǎng)CD交直線a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故選A.【點(diǎn)睛】本題考查平行線的性質(zhì),三角形的外角等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.26.、兩地相距160千米,甲車(chē)和乙車(chē)的平均速度之比為,兩車(chē)同時(shí)從地出發(fā)到地,乙車(chē)比甲車(chē)早到30分鐘,若求甲車(chē)的平均速度,設(shè)甲車(chē)平均速度為千米/小時(shí),則所列方程是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 精美科技風(fēng)公司簡(jiǎn)介企業(yè)介紹模板
- 電子陶瓷料制配工班組管理能力考核試卷含答案
- 電鳴樂(lè)器接裝工測(cè)試驗(yàn)證模擬考核試卷含答案
- 裝飾美工變更管理能力考核試卷含答案
- 硅烷偶聯(lián)劑生產(chǎn)工復(fù)測(cè)競(jìng)賽考核試卷含答案
- 通信網(wǎng)絡(luò)管理員成果轉(zhuǎn)化模擬考核試卷含答案
- 電化學(xué)精制裝置操作工崗前可持續(xù)發(fā)展考核試卷含答案
- 天然氣凈化操作工崗后知識(shí)考核試卷含答案
- 飛機(jī)起落架附件裝調(diào)工崗前安全生產(chǎn)知識(shí)考核試卷含答案
- 光纖著色并帶工安全生產(chǎn)意識(shí)知識(shí)考核試卷含答案
- 毒理學(xué)中的替代測(cè)試方法
- DB3502-Z 5026-2017代建工作規(guī)程
- 廣東省大灣區(qū)2023-2024學(xué)年高一上學(xué)期期末生物試題【含答案解析】
- 第四單元地理信息技術(shù)的應(yīng)用課件 【高效課堂+精研精講】高中地理魯教版(2019)必修第一冊(cè)
- 魯科版高中化學(xué)必修一教案全冊(cè)
- 提高隧道初支平整度合格率
- 2023年版測(cè)量結(jié)果的計(jì)量溯源性要求
- GB 29415-2013耐火電纜槽盒
- 中國(guó)古代經(jīng)濟(jì)試題
- 軟件定義汽車(chē):產(chǎn)業(yè)生態(tài)創(chuàng)新白皮書(shū)
- 磷石膏抹灰專(zhuān)項(xiàng)施工方案
評(píng)論
0/150
提交評(píng)論