考點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷及參考答案詳解【輕巧奪冠】_第1頁(yè)
考點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷及參考答案詳解【輕巧奪冠】_第2頁(yè)
考點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷及參考答案詳解【輕巧奪冠】_第3頁(yè)
考點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷及參考答案詳解【輕巧奪冠】_第4頁(yè)
考點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷及參考答案詳解【輕巧奪冠】_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,四邊形OABC是平行四邊形,點(diǎn)A的坐標(biāo)為A(3,0),∠COA=60°,D為邊AB的中點(diǎn),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)C,D兩點(diǎn),直線CD與y軸相交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為(

)A.(0,2) B.(0,3) C.(0,5) D.(0,6)2、如圖,D,E分別是△ABC的邊AB,AC上的點(diǎn),連接DE,下列條件不能判定△ADE與△ABC相似的是()A.∠ADE=∠B B.∠AED=∠C C. D.3、若關(guān)于x的一元二次方程x2﹣ax=0的一個(gè)解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.24、如圖,在△ABC中,點(diǎn)G為△ABC的重心,過(guò)點(diǎn)G作DE∥BC,分別交AB、AC于點(diǎn)D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.5、如圖,點(diǎn)A是反比例函數(shù)圖象上的一點(diǎn),過(guò)點(diǎn)A作軸,垂足為點(diǎn)C,D為AC的中點(diǎn),若的面積為1,則k的值為()A. B. C.3 D.46、方程y2=-a有實(shí)數(shù)根的條件是(

)A.a(chǎn)≤0 B.a(chǎn)≥0 C.a(chǎn)>0 D.a(chǎn)為任何實(shí)數(shù)二、多選題(6小題,每小題2分,共計(jì)12分)1、如圖,在△ABC中,點(diǎn)P為AB上一點(diǎn),給出下列四個(gè)條件中能滿足△APC和△ACB相似的條件是(

)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB2、如圖,四邊形ABCD為菱形,BFAC,DF交AC的延長(zhǎng)線于點(diǎn)E,交BF于點(diǎn)3、如圖,下列條件能判定△ABC與△ADE相似的是(

)A. B.∠B=∠ADE C. D.∠C=∠AED4、如圖,在△ABC中,∠BAC=90°,D是BC的中點(diǎn),AE⊥AD交CB的延長(zhǎng)線于點(diǎn)E.下列結(jié)論不正確的是(

)A.△AED∽△ACB B.△AEB∽△ACDC.△BAE∽△ACE D.△AEC∽△DAC5、如圖所示是△ABC位似圖形的幾種畫法,正確的是()A. B.C. D.6、平行四邊形的對(duì)角線與相交于點(diǎn),添加以下條件,能判定平行四邊形為菱形的是(

).A. B. C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,小明用相似圖形的知識(shí)測(cè)量旗桿高度,已知小明的眼睛離地面1.5米,他將3米長(zhǎng)的標(biāo)桿豎直放置在身前3米處,此時(shí)小明的眼睛、標(biāo)桿的頂端、旗桿的頂端在一條直線上,通過(guò)計(jì)算測(cè)得旗桿高度為15米,則旗桿和標(biāo)桿之間距離CE長(zhǎng)___________米.2、已知方程的一根為,則方程的另一根為_(kāi)______.3、如圖,在平面直角坐標(biāo)系中,一條過(guò)原點(diǎn)的直線與反比例函數(shù)的圖象x相交于兩點(diǎn),若,,則該反比例函數(shù)的表達(dá)式為_(kāi)_____.4、若,則________.5、若m,n是關(guān)于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.6、對(duì)任意實(shí)數(shù)a,b,定義一種運(yùn)算:,若,則x的值為_(kāi)________.7、如果關(guān)于x的方程有兩個(gè)相等的正實(shí)數(shù)根,那么m的值為_(kāi)___________.8、若正方形的對(duì)角線的長(zhǎng)為4,則該正方形的面積為_(kāi)________.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,矩形ABCD中,AB=2cm,BC=3cm,點(diǎn)E從點(diǎn)B沿BC以2cm/s的速度向點(diǎn)C移動(dòng),同時(shí)點(diǎn)F從點(diǎn)C沿CD以1cm/s的速度向點(diǎn)D移動(dòng),當(dāng)E,F(xiàn)兩點(diǎn)中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng)△AEF是以AF為底邊的等腰三角形時(shí),求點(diǎn)E運(yùn)動(dòng)的時(shí)間.2、已知關(guān)于的一元二次方程.(1)求證:方程總有兩個(gè)實(shí)數(shù)根;(2)若方程的兩個(gè)實(shí)數(shù)根都為正整數(shù),求這個(gè)方程的根.3、如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為θ.(1)[問(wèn)題發(fā)現(xiàn)]①當(dāng)θ=0°時(shí),=;②當(dāng)θ=180°時(shí),=;(2)[拓展研究]試判斷:當(dāng)0°≤θ<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;(3)[問(wèn)題解決]在旋轉(zhuǎn)過(guò)程中,BE的最大值為.4、已知,AB=18,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),分別以AP、BP為邊在AB的同側(cè)作正方形.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.(1)如圖1,若兩個(gè)正方形的面積之和,當(dāng)時(shí),求出的大??;(2)如圖2,當(dāng)取不同值時(shí),判斷直線和的位置關(guān)系,說(shuō)明理由;(3)如圖3,用表示出四邊形的面積.5、小敏與小霞兩位同學(xué)解方程的過(guò)程如下框:小敏:兩邊同除以,得,則.小霞:移項(xiàng),得,提取公因式,得.則或,解得,.你認(rèn)為他們的解法是否正確?若正確請(qǐng)?jiān)诳騼?nèi)打“√”;若錯(cuò)誤請(qǐng)?jiān)诳騼?nèi)打“×”,并寫出你的解答過(guò)程.6、在矩形中,于點(diǎn),點(diǎn)是邊上一點(diǎn).(1)若平分,交于點(diǎn),PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.-參考答案-一、單選題1、B【解析】【分析】作CE⊥x軸于點(diǎn)E,過(guò)B作BF⊥x軸于F,過(guò)D作DM⊥x軸于M,設(shè)C的坐標(biāo)為(x,x),表示出D的坐標(biāo),將C、D兩點(diǎn)坐標(biāo)代入反比例函數(shù)的解析式,解關(guān)于x的方程求出x即可得到點(diǎn)C、D的坐標(biāo),進(jìn)而求得直線CD的解析式,最后計(jì)算該直線與y軸交點(diǎn)坐標(biāo)即可得出結(jié)果.【詳解】解:作CE⊥x軸于點(diǎn)E,則∠CEO=90°,過(guò)B作BF⊥x軸于F,過(guò)D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點(diǎn),∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設(shè)C的坐標(biāo)為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點(diǎn)的坐標(biāo)為(3+x,),把C、D的坐標(biāo)代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設(shè)直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當(dāng)x=0時(shí),,∴點(diǎn)E的坐標(biāo)為(0,).故選:B.【考點(diǎn)】本題主要考查了平行四邊形的性質(zhì)、運(yùn)用待定系數(shù)法求函數(shù)的解析式以及含度角的直角三角形的性質(zhì).根據(jù)反比例函數(shù)圖象經(jīng)過(guò)C、D兩點(diǎn),得出關(guān)于x的方程是解決問(wèn)題的關(guān)鍵.2、D【解析】【分析】根據(jù)相似三角形的判定定理逐個(gè)分析判斷即可.【詳解】解:∵∠ADE=∠B,∴故A能判定△ADE與△ABC相似,不符合題意;∠AED=∠C,∴故B能判定△ADE與△ABC相似,不符合題意;,∴故C能判定△ADE與△ABC相似,不符合題意;,條件未給出,不能判定△ADE與△ABC相似,故D符合題意故選D【考點(diǎn)】本題考查了相似三角形的判定定理,掌握相似三角形的判定定理是解題的關(guān)鍵.3、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關(guān)于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點(diǎn)】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.4、A【解析】【分析】連接AG并延長(zhǎng)交BC于H,如圖,利用三角形重心的性質(zhì)得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)得到==,然后根據(jù)比例的性質(zhì)得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長(zhǎng)交BC于H,如圖,∵點(diǎn)G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【考點(diǎn)】本題考查了三角形的重心與相似三角形的性質(zhì)與判定.重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2∶1.5、D【解析】【分析】先設(shè)出點(diǎn)A的坐標(biāo),進(jìn)而表示出點(diǎn)D的坐標(biāo),利用△ADO的面積建立方程求出,即可得出結(jié)論.【詳解】點(diǎn)A的坐標(biāo)為(m,2n),∴,∵D為AC的中點(diǎn),∴D(m,n),∵AC⊥軸,△ADO的面積為1,∴,∴,∴,故選:D.【考點(diǎn)】本題考查反比例函數(shù)系數(shù)k的幾何意義、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用反比例函數(shù)的性質(zhì)解答.6、A【解析】【分析】根據(jù)平方的非負(fù)性可以得出﹣a≥0,再進(jìn)行整理即可.【詳解】解:∵方程y2=﹣a有實(shí)數(shù)根,∴﹣a≥0(平方具有非負(fù)性),∴a≤0;故選:A.【考點(diǎn)】此題考查了直接開(kāi)平方法解一元二次方程,關(guān)鍵是根據(jù)已知條件得出﹣a≥0.二、多選題1、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項(xiàng)判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項(xiàng)A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項(xiàng)B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項(xiàng)C符合題意;D、AB·CP=AP·CB不是兩個(gè)對(duì)應(yīng)邊成比例,不能證明△APC和△ACB相似,故選項(xiàng)D不符合條件,故選:ABC.【考點(diǎn)】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.2、ABD【解析】【分析】根據(jù)菱形的性質(zhì)、全等三角形的判定與性質(zhì)、中線的性質(zhì)即可依次判斷.【詳解】解:∵四邊形ABCD為菱形,∴AB=AD,∠BAE=∠DAE,∵AE=AE,∴△ABE≌△ADE(SAS);∴BE=DE,∠AEB=∠AED,∵CE=CE,∴△CBE≌△CDE(SAS),A正確;∵BFAC,∴∠FBE=∠AEB,∠AED=∠F,∴∠FBE=∠F,∴BE=EF,∴DE=FE,B正確;連接BD交AC于O,∵AO=CO,∵CE:AC=1:2,∴AO=CO=CE,設(shè)S△BCE=m,∴S△ABC=S△ADC=2m,S△BOE=S△DOE=2m,∴S四邊形ABDC=4m,S△BDE=4m,∵E點(diǎn)是DF中點(diǎn)∴S△BEF=S△BDE=4m,∴S△BEF=S四邊形ABCD,故D正確;∵AE與DE不相等,故AE與BE不相等故C錯(cuò)誤;故選:ABD.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),菱形的性質(zhì),平行線的性質(zhì),三角形的面積的計(jì)算,正確的識(shí)別圖形是解題的關(guān)鍵.3、BCD【解析】【分析】根據(jù)相似三角形的判斷方法求解即可.【詳解】解:A、,不能判定△ABC∽△ADE,不符合題意;B、∵∠B=∠ADE,∠A=∠A,∴△ABC∽△ADE,符合題意;C、∵,∠A=∠A,∴△ABC∽△ADE,符合題意;D、∵∠C=∠AED,∠A=∠A,∴△ABC∽△ADE,符合題意;故選:BCD.【考點(diǎn)】此題考查了相似三角形的判斷方法,解題的關(guān)鍵是熟練掌握相似三角形的判斷方法.4、ABD【解析】【分析】先利用直角三角形斜邊上的中線等于斜邊的一半得到DA=DC,則∠DAC=∠C,再利用等角的余角相等得到∠EAB=∠DAC,從而有∠EAB=∠C,再加上公共角即可判斷△BAE∽△ACE.【詳解】解:∵∠BAC=90°,D是BC中點(diǎn),∴DA=DC,∴∠DAC=∠C,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠CAD+∠BAD=90°,∴∠EAB=∠DAC,∴∠EAB=∠C,而∠E是公共角,∴△BAE∽△ACE∴C選項(xiàng)正確,ABD選項(xiàng)錯(cuò)誤,故選ABD.【考點(diǎn)】此題主要考查學(xué)生對(duì)相似三角形判定定理的掌握和應(yīng)用.5、ABCD【解析】【分析】利用位似圖形的畫法:①確定位似中心;②分別連接并延長(zhǎng)位似中心和能代表原圖的關(guān)鍵點(diǎn);③根據(jù)位似比,確定能代表所作的位似圖形的關(guān)鍵點(diǎn);④順次連接上述各點(diǎn),得到放大或縮小的圖形.【詳解】解:第一個(gè)圖形中的位似中心為A點(diǎn),第二個(gè)圖形中的位似中心為BC上的一點(diǎn),第三個(gè)圖形中的位似中心為O點(diǎn),第四個(gè)圖形中的位似中心為O點(diǎn).故選:ABCD.【考點(diǎn)】本題主要考查了位似變換,正確把握位似圖形的定義是解題關(guān)鍵.6、ABC【解析】【分析】根據(jù)菱形判定條件對(duì)各選項(xiàng)進(jìn)行判斷即可;【詳解】解:當(dāng)時(shí),平行四邊形是菱形;當(dāng)時(shí),平行四邊形是菱形;當(dāng)時(shí),平行四邊形是菱形;故選A、B、C.【考點(diǎn)】本題考查了菱形的判定.解題的關(guān)鍵在于熟練掌握菱形的判定條件.三、填空題1、24【解析】【分析】如圖,延長(zhǎng)交的延長(zhǎng)線于,設(shè)米,米.利用相似三角形是性質(zhì)分別求出,即可.【詳解】解:如圖,延長(zhǎng)交的延長(zhǎng)線于,設(shè)米,米.由題意,米,米,米.,,,,解得,經(jīng)檢驗(yàn)是分式方程的解,,,,,,經(jīng)檢驗(yàn)是分式方程的解,(米,故答案為:24.【考點(diǎn)】本題考查相似三角形的判定和性質(zhì),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問(wèn)題.2、【解析】【分析】設(shè)方程的另一個(gè)根為c,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設(shè)方程的另一個(gè)根為c,∵,∴.故答案為.【考點(diǎn)】本題考查的是根與系數(shù)的關(guān)系,熟記一元二次方程根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.3、y=.【解析】【分析】由正比例函數(shù)與反比例函數(shù)的兩個(gè)交點(diǎn)關(guān)于原點(diǎn)對(duì)稱,可得m2-7=2,由點(diǎn)A在第三象限可求m的值,即可求點(diǎn)A坐標(biāo),代入解析式可求解.【詳解】解:∵一條過(guò)原點(diǎn)的直線與反比例函數(shù)的圖象相交于A、B兩點(diǎn),∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,∴m2-7=2,∴m=±3,∵點(diǎn)A在第三象限,∴m<0,∴m=-3,∴點(diǎn)A(-3,-2),∵點(diǎn)A在反比例函數(shù)的圖象上,∴k=-3×(-2)=6,∴反比例函數(shù)的表達(dá)式為y=,故答案為:y=.【考點(diǎn)】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,掌握正比例函數(shù)與反比例函數(shù)的兩個(gè)交點(diǎn)關(guān)于原點(diǎn)對(duì)稱是本題的關(guān)鍵.4、【解析】【分析】根據(jù)比例的基本性質(zhì)進(jìn)行化簡(jiǎn),代入求職即可.【詳解】由可得,,代入.故答案為.【考點(diǎn)】本題主要考查了比例的基本性質(zhì)化簡(jiǎn),準(zhǔn)確觀察分析是解題的關(guān)鍵.5、21【解析】【分析】先根據(jù)根與系數(shù)的關(guān)系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計(jì)算.【詳解】解:∵m,n是關(guān)于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2,x1x2.6、2或-3##-3或2【解析】【分析】根據(jù)題意得到關(guān)于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點(diǎn)】本題主要考查了新定義下的實(shí)數(shù)運(yùn)算,解一元二次方程,正確理解題意是解題的關(guān)鍵.7、4【解析】【分析】根據(jù)一元二次方程根的判別式即可求得或,再根據(jù)方程有兩個(gè)相等的正實(shí)數(shù)根,可知兩根之和為正數(shù),據(jù)此即可解答.【詳解】解:關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根解得或又關(guān)于x的方程有兩個(gè)相等的正實(shí)數(shù)根兩根之和為正數(shù),即,解得故故答案為:4【考點(diǎn)】本題考查了一元二次方程根的判別式及根與系數(shù)的關(guān)系,熟練掌握和運(yùn)用一元二次方程根的判別式及根與系數(shù)的關(guān)系是解決本題的關(guān)鍵解.8、8【解析】【分析】根據(jù)正方形的面積等于對(duì)角線乘積的一半列式計(jì)算即可得解.【詳解】解:∵正方形的一條對(duì)角線的長(zhǎng)為4,∴這個(gè)正方形的面積=×42=8.故答案為:8.【考點(diǎn)】本題考查了正方形的性質(zhì),熟練掌握正方形的面積的兩種求法是解題的關(guān)鍵.四、解答題1、(6-)s【解析】【分析】設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間是x秒.根據(jù)題意可得方程,解方程即可得到結(jié)論.【詳解】解:設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間是xs.根據(jù)題意可得22+(2x)2=(3-2x)2+x2,解這個(gè)方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴兩點(diǎn)運(yùn)動(dòng)了1.5s后停止運(yùn)動(dòng).∴x=6-.答:當(dāng)△AEF是以AF為底邊的等腰三角形時(shí),點(diǎn)E運(yùn)動(dòng)的時(shí)間是(6-)s.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,考查了矩形的性質(zhì),等腰三角形的判定及性質(zhì),勾股定理的運(yùn)用.2、證明見(jiàn)祥解;.【解析】【分析】(1)先求出判別式,再配方變?yōu)榧纯桑唬?)用十字相乘法可以求出根的表達(dá)式,方程的兩個(gè)實(shí)數(shù)根都為正整數(shù),列不等式組,即可得出m的值.【詳解】證明:∵是關(guān)于的一元二次方程,,∴此方程總有兩個(gè)實(shí)數(shù)根.解:∵,∴,∴,.∵方程的兩個(gè)實(shí)數(shù)根都為正整數(shù),,解得,,∴..【考點(diǎn)】本題考查了根的判別式,配方為平方式,根據(jù)方程的兩個(gè)實(shí)數(shù)根都為正整數(shù),列出不等式組,求出是解題的關(guān)鍵.3、(1)①;②;(2)當(dāng)0°≤θ<360°時(shí),的大小沒(méi)有變化;證明見(jiàn)解析;(3)4+2.【解析】【分析】(1)①利用等腰三角形的性質(zhì)判斷出∠A=∠B,∠A=∠AED,進(jìn)而得出∠B=∠DEA,得出DE∥BC,即可得出結(jié)論;②同①的方法,即可得出結(jié)論;(2)利用兩邊成比例,夾角相等,判斷出△ADC∽△AEB,即可得出結(jié)論;(3)判斷出點(diǎn)E在BA的延長(zhǎng)線上時(shí),BE最大,再求出AE,即可得出結(jié)論.【詳解】(1)①在Rt△ABC中,AC=BC,∴AB=AC,∵AC=BC,∴∠A=∠B,∵AD=DE,∴∠DEA=∠A,∴∠DEA=∠B,∴DE∥BC,∴,∴,故答案為:;②如圖,當(dāng)θ=180°時(shí),∵AC=BC,∴∠BAC=∠B,∵∠BAC=∠DAE,∴∠DAE=∠B,∵AD=DE,∴∠DEA=∠DAE,∴∠DEA=∠B,∴DE∥BC,∴,∴,∴,故答案為:;(2)當(dāng)0°≤θ<360°時(shí),的大小沒(méi)有變化;證明:在Rt△ABC中,∵∠ACB=90°,AC=BC,∴,∠CAB=45°,同理,∠DAE=45°,∴,∵∠CAB=∠DAE,∴∠CAD=∠BAE,∴△ADC∽△AEB,∴;(3)如答圖,當(dāng)點(diǎn)E在BA的延長(zhǎng)線上時(shí),BE最大,其最大值為AB+AE,在Rt△ABC中,AC=BC=2,∴AB=AC=×2=4,∴AD=DE=AB=2,由(1)知,DE∥BC,∴∠ADE=∠C=90°,∴AE=AD=2,∴BE最大=AB+AE=4+2,故答案為:4+2.【考點(diǎn)】此題是幾何變換綜合題,主要考查了等腰三角

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論