版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》專項訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知直線,點P在直線l上,點,點,若是直角三角形,則點P的個數(shù)有()A.1個 B.2個 C.3個 D.4個2、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.133、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點B的對應(yīng)點為點B′,AB′與DC相交于點E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE4、如圖,已知是平分線上的一點,,,是的中點,,如果是上一個動點,則的最小值為()A. B. C. D.5、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.3第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,平面直角坐標系中,有,,三點,以A,B,O三點為頂點的平行四邊形的另一個頂點D的坐標為______.2、菱形的對角線之比為3:4,且面積為24,則它的對角線分別為________.3、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標為(2,0),按此規(guī)律進行下去,則點P2021的坐標為_____.4、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.5、如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.三、解答題(5小題,每小題10分,共計50分)1、(1)先化簡,再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;(2)如圖,菱形ABCD中,AB=AC,E、F分別是BC、AD的中點,連接AE、CF.證明:四邊形AECF是矩形.2、如圖,已知△ABC中,D是AB上一點,AD=AC,AE⊥CD,垂足是E,F(xiàn)是BC的中點,求證:BD=2EF.
3、如圖,在△ABC中,點D,E分別是AC,AB的中點,點F是CB延長線上的一點,且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.4、已知,在中,,,點D為BC的中點.(1)觀察猜想如圖①,若點E、F分別是AB、AC的中點,則線段DE與DF的數(shù)量關(guān)系是______________;線段DE與DF的位置關(guān)系是______________.(2)類比探究如圖②,若點E、F分別是AB、AC上的點,且,上述結(jié)論是否仍然成立,若成立,請證明:若不成立,請說明理由;(3)解決問題如圖③,若點E、F分別為AB、CA延長線的點,且,請直接寫出的面積.
5、如圖,四邊形ABCD為平行四邊形,∠BAD的平分線AF交CD于點E,交BC的延長線于點F.點E恰是CD的中點.求證:(1)△ADE≌△FCE;(2)BE⊥AF.-參考答案-一、單選題1、C【解析】【分析】分別討論,,三種情況,求出點坐標即可得出答案.【詳解】如圖,當時,點與點橫坐標相同,代入中得:,,當時,點與點橫坐標相同,,代入中得:,,當時,取中點為點,過點作交于點,設(shè),,,,,,,,,在中,,解得:,,點有3個.故選:C.【點睛】本題考查直角三角形的性質(zhì)與平面直角坐標系,掌握分類討論的思想是解題的關(guān)鍵.2、D【解析】【分析】由菱形的性質(zhì)和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點睛】本題考查了菱形的性質(zhì)、勾股定理等知識,熟練掌握菱形的性質(zhì),由勾股定理求出AB=13是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點B的對應(yīng)點為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項.故選D.【點睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對邊互相平行,等角對等邊的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線的性質(zhì)進而得到OP,DP的值,再根據(jù)角平分線的性質(zhì)以及垂線段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點P是∠AOB平分線上的一點,,∴,∵PD⊥OA,M是OP的中點,∴,∴∵點C是OB上一個動點∴當時,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點睛】本題主要考查了角平分線的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質(zhì)、垂線段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.5、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運用這些性質(zhì)解決問題.二、填空題1、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標相等,根據(jù)B的橫坐標和BO的值即可求出D的橫坐標.【詳解】∵平行四邊形ABCD的頂點A、B、O的坐標分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標是3+6=9,縱坐標是4,即D的坐標是(9,4),同理可得出D的坐標還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點睛】本題考查了坐標與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對邊平行且相等.2、6和8##8和6【解析】【分析】根據(jù)比例設(shè)兩條對角線分別為3x、4x,再根據(jù)菱形的面積等于兩對角線乘積的一半列式求出x的值即可.【詳解】解:設(shè)兩條對角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負值舍去),∴菱形的兩對角線的長分別為,.故答案為:6和8.【點睛】本題考查了菱形的面積,主要利用了菱形的對角線互相垂直平分的性質(zhì),菱形的面積的求法,需熟記.3、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標.【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標系點的坐標規(guī)律,正方形的性質(zhì),找到點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.4、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.5、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點A′在過點A且平行于BD的定直線上,作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點A′在過點A且平行于BD的定直線上,∴作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過點D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.三、解答題1、(1),0;(2)證明見解析.【分析】(1)根據(jù)整式的乘法運算法則先去括號,然后合并同類項化簡,然后代入求解即可;(2)首先根據(jù)菱形的性質(zhì)得到,,然后根據(jù)E、F分別是BC、AD的中點,得出,根據(jù)一組對邊平行且相等證明出四邊形AECF是平行四邊形,然后根據(jù)等腰三角形三線合一的性質(zhì)得出,即可證明出四邊形AECF是矩形.【詳解】(1)(a+b)(a﹣b)﹣a(a﹣2b)將a=1,b=2代入得:原式=;(2)如圖所示,∵四邊形ABCD是菱形,∴,且,又∵E、F分別是BC、AD的中點,∴,∴四邊形AECF是平行四邊形,∵AB=AC,E是BC的中點,∴,即,∴平行四邊形AECF是矩形.【點睛】此題考查了整式的混合運算,代數(shù)式求值問題,菱形的性質(zhì)和矩形的判定,解題的關(guān)鍵是熟練掌握整式的混合運算法則,菱形的性質(zhì)和矩形的判定定理.2、見解析.【分析】先證明再證明EF是△CDB的中位線,從而可得結(jié)論.【詳解】證明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中點∴EF是△CDB的中位線∴BD=2EF【點睛】本題考查的是等腰三角形的性質(zhì),三角形的中位線的性質(zhì),掌握“三角形的中位線平行于第三邊且等于第三邊的一半”是解題的關(guān)鍵.3、(1)見解析;(2)平行四邊形DEFB的周長=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點D,E分別是AC,AB的中點,∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四邊形DEFB是平行四邊形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,∴BD=EF,∵D是AC的中點,AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四邊形DEFB的周長=2(DE+BD)=2(4+10)=28(cm).【點睛】本題考查了平行四邊形的判定與性質(zhì)、三角形中位線定理、勾股定理等知識;熟練掌握三角形中位線定理,證明四邊形DEFB為平行四邊形是解題的關(guān)鍵.4、(1),;(2)成立,證明見解析;(3)【分析】(1)由點E、F、D分別是AB、AC、BC的中點,可得,,,,再由,,得,,由此即可得到答案;(2)連接,只需要證明,得到,,即可得到結(jié)論;(3)連接AD,證明△BDE≌△ADF得到,則,由此求解即可.【詳解】解:(1)∵點E、F、D分別是AB、AC、BC的中點,∴,,,,∵,,∴,,∴即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 氯丁橡膠裝置操作工QC管理強化考核試卷含答案
- 鈮碳還原火法冶煉工安全生產(chǎn)知識競賽考核試卷含答案
- 地毯后整工崗前技術(shù)實務(wù)考核試卷含答案
- 快速查找合同范本
- 委托方合同范本
- 搭伙購車合同范本
- 鋼棚拆除合同協(xié)議
- 超市門面合同范本
- 超過供貨合同范本
- 農(nóng)藥代儲合同范本
- 工裝施工工藝流程及施工規(guī)范
- 骨科康復流程課件
- 成就心態(tài)演講稿
- 國際空運干貨知識培訓課件
- 證券公司全面風險管理制度
- 美容師轉(zhuǎn)正考核試卷及答案
- 風濕性心臟病課件
- 行車安全培訓內(nèi)容
- 空調(diào)安裝工程開工報告標準模板
- 良好心態(tài)的培養(yǎng)課件
- 數(shù)據(jù)中心消防培訓課件教學
評論
0/150
提交評論