數(shù)列關(guān)系試題及答案_第1頁(yè)
數(shù)列關(guān)系試題及答案_第2頁(yè)
數(shù)列關(guān)系試題及答案_第3頁(yè)
數(shù)列關(guān)系試題及答案_第4頁(yè)
數(shù)列關(guān)系試題及答案_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)列關(guān)系試題及答案

一、單項(xiàng)選擇題1.數(shù)列\(zhòng)(1\),\(3\),\(6\),\(10\),\(15\),…的一個(gè)通項(xiàng)公式是()A.\(a_{n}=n^{2}-(n-1)\)B.\(a_{n}=n^{2}-1\)C.\(a_{n}=\frac{n(n+1)}{2}\)D.\(a_{n}=\frac{n(n-1)}{2}\)答案:C2.已知數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式\(a_{n}=3n-50\),則其前\(n\)項(xiàng)和\(S_{n}\)取得最小值時(shí)\(n\)的值為()A.\(15\)B.\(16\)C.\(17\)D.\(18\)答案:B3.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=5\),\(a_{5}=9\),則\(a_{7}\)等于()A.\(12\)B.\(13\)C.\(14\)D.\(15\)答案:B4.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=2\),\(a_{5}=16\),則公比\(q\)為()A.\(-2\)B.\(2\)C.\(4\)D.\(8\)答案:B5.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}=2a_{n}+1\),則\(a_{5}\)的值為()A.\(30\)B.\(31\)C.\(32\)D.\(33\)答案:B6.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和為\(S_{n}\),若\(S_{11}=22\),則\(a_{6}\)等于()A.\(1\)B.\(2\)C.\(3\)D.\(4\)答案:B7.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{2}=3\),\(a_{3}+a_{4}=12\),則\(a_{5}+a_{6}\)等于()A.\(24\)B.\(48\)C.\(96\)D.\(192\)答案:B8.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=n^{2}+1\),則\(a_{n}\)等于()A.\(2n-1\)B.\(\begin{cases}2,&n=1\\2n-1,&n\geq2\end{cases}\)C.\(2n+1\)D.\(\begin{cases}2,&n=1\\2n+1,&n\geq2\end{cases}\)答案:B9.若數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列,且\(a_{1}+a_{4}+a_{7}=45\),\(a_{2}+a_{5}+a_{8}=39\),則\(a_{3}+a_{6}+a_{9}\)的值是()A.\(24\)B.\(27\)C.\(30\)D.\(33\)答案:D10.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}a_{4}a_{5}=8\),則\(a_{2}a_{6}\)等于()A.\(4\)B.\(6\)C.\(8\)D.\(16\)答案:A二、多項(xiàng)選擇題1.以下關(guān)于等差數(shù)列的說(shuō)法正確的是()A.若\(\{a_{n}\}\)是等差數(shù)列,\(m,n,p,q\inN^+\),且\(m+n=p+q\),則\(a_{m}+a_{n}=a_{p}+a_{q}\)B.等差數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式\(a_{n}=a_{1}+(n-1)d\)(\(d\)為公差)C.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和公式\(S_{n}=\frac{n(a_{1}+a_{n})}{2}=na_{1}+\frac{n(n-1)}{2}d\)D.若\(a,b,c\)成等差數(shù)列,則\(2b=a+c\)答案:ABCD2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,下列說(shuō)法正確的是()A.若\(a_{1}>0\),\(q>1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列B.若\(a_{1}<0\),\(0<q<1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列C.若\(a_{n}=a_{1}q^{n-1}\),則\(a_{m}=a_{n}q^{m-n}\)(\(m,n\inN^+\))D.等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=\frac{a_{1}(1-q^{n})}{1-q}\)(\(q\neq1\))答案:ABCD3.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=2\),\(a_{1}=1\),則()A.數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列B.\(a_{n}=2n-1\)C.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=n^{2}\)D.數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列答案:ABCD4.對(duì)于數(shù)列\(zhòng)(\{a_{n}\}\),其前\(n\)項(xiàng)和\(S_{n}=3n^{2}-2n\),則()A.\(a_{1}=1\)B.\(a_{n}=6n-5\)C.數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列D.數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(6\)答案:ABCD5.設(shè)等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\),前\(n\)項(xiàng)和為\(S_{n}\),若\(S_{n+1},S_{n},S_{n+2}\)成等差數(shù)列,則()A.\(q=-2\)B.\(q=2\)C.\(a_{n+1}=-2a_{n}\)D.\(a_{n+1}=2a_{n}\)答案:AC6.數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n+1}=\frac{a_{n}}{1+a_{n}}\),則()A.\(a_{2}=\frac{1}{2}\)B.\(a_{3}=\frac{1}{3}\)C.\(a_{n}=\frac{1}{n}\)D.數(shù)列\(zhòng)(\{\frac{1}{a_{n}}\}\)是等差數(shù)列答案:ABCD7.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,公差\(d\neq0\),\(a_{1}=1\),且\(a_{1},a_{3},a_{9}\)成等比數(shù)列,則()A.\(a_{n}=n\)B.\(a_{3}=3\)C.\(a_{9}=9\)D.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=\frac{n(n+1)}{2}\)答案:ABCD8.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{4}=16\),則()A.\(q=2\)B.\(a_{n}=2^{n}\)C.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=2^{n+1}-2\)D.\(a_{2}=4\)答案:ABCD9.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n}=2a_{n-1}+1\)(\(n\geq2\)),\(a_{1}=1\),則()A.\(a_{2}=3\)B.\(a_{3}=7\)C.\(a_{n}=2^{n}-1\)D.數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列答案:ABCD10.數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式\(a_{n}=n^{2}-9n\),則()A.數(shù)列\(zhòng)(\{a_{n}\}\)的最小項(xiàng)是\(a_{4}\)或\(a_{5}\)B.\(a_{4}=-20\)C.\(a_{5}=-20\)D.數(shù)列\(zhòng)(\{a_{n}\}\)在\(n<4.5\)時(shí)單調(diào)遞減,在\(n>4.5\)時(shí)單調(diào)遞增答案:ABCD三、判斷題1.常數(shù)列既是等差數(shù)列又是等比數(shù)列。(×)2.若數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=n^{2}+n+1\),則\(a_{n}=2n\)。(×)3.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{m}=a_{n}\)(\(m\neqn\)),則公差\(d=0\)。(√)4.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{2}\neq0\),若\(a_{1},a_{3},a_{2}\)成等差數(shù)列,則公比\(q=-\frac{1}{2}\)。(√)5.若數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=n\),則\(a_{n}\)的通項(xiàng)公式可通過(guò)累加法求得。(√)6.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}\),\(S_{m},S_{2m}-S_{m},S_{3m}-S_{2m}\)(\(m\inN^+\))也成等差數(shù)列。(√)7.等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}\),當(dāng)\(q=-1\)且\(n\)為偶數(shù)時(shí),\(S_{n}=0\)。(√)8.若數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式\(a_{n}=(-1)^{n}n\),則\(S_{100}=50\)。(√)9.數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{n+1}=a_{n}+2\)(\(n\geq1\)),則\(\{a_{n}\}\)是公差為\(2\)的等差數(shù)列。(√)10.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{n}>0\),\(a_{2}a_{4}+2a_{3}a_{5}+a_{4}a_{6}=25\),則\(a_{3}+a_{5}=5\)。(√)四、簡(jiǎn)答題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=7\),\(a_{5}+a_{7}=26\),求\(\{a_{n}\}\)的通項(xiàng)公式。答:設(shè)等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\),首項(xiàng)為\(a_{1}\)。已知\(a_{3}=7\),則\(a_{1}+2d=7\);\(a_{5}+a_{7}=26\),即\((a_{1}+4d)+(a_{1}+6d)=26\),化簡(jiǎn)得\(2a_{1}+10d=26\)。聯(lián)立方程組\(\begin{cases}a_{1}+2d=7\\2a_{1}+10d=26\end{cases}\),解得\(a_{1}=3\),\(d=2\)。所以\(a_{n}=a_{1}+(n-1)d=3+2(n-1)=2n+1\)。2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=12\),\(a_{4}=18\),求\(\{a_{n}\}\)的通項(xiàng)公式。答:設(shè)等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\)。由等比數(shù)列性質(zhì)可知\(q=\frac{a_{4}}{a_{3}}=\frac{18}{12}=\frac{3}{2}\)。又\(a_{3}=a_{1}q^{2}=12\),把\(q=\frac{3}{2}\)代入可得\(a_{1}\times(\frac{3}{2})^{2}=12\),解得\(a_{1}=\frac{16}{3}\)。所以通項(xiàng)公式\(a_{n}=a_{1}q^{n-1}=\frac{16}{3}\times(\frac{3}{2})^{n-1}=2^{n+1}\times3^{2-n}\)。3.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=n^{2}-2n\),求\(a_{n}\)。答:當(dāng)\(n=1\)時(shí),\(a_{1}=S_{1}=1^{2}-2\times1=-1\)。當(dāng)\(n\geq2\)時(shí),\(a_{n}=S_{n}-S_{n-1}=n^{2}-2n-[(n-1)^{2}-2(n-1)]\),化簡(jiǎn)得\(a_{n}=n^{2}-2n-(n^{2}-2n+1-2n+2)=2n-3\)。當(dāng)\(n=1\)時(shí),\(2\times1-3=-1=a_{1}\)。所以\(a_{n}=2n-3\)。4.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(d=2\),求其前\(n\)項(xiàng)和\(S_{n}\)的最小值。答:由等差數(shù)列前\(n\)項(xiàng)和公式\(S_{n}=na_{1}+\frac

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論