版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,若存在,求出點P坐標,若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).2.綜合與實踐背景閱讀:在同一平面內,兩條不重合的直線的位置關系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關系的性質和判定是幾何的重要知識,是初中階段幾何合情推理的基礎.已知:AM∥CN,點B為平面內一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.3.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).小明的思路是:過P作PE∥AB,通過平行線性質,可得∠APC=∠APE+∠CPE=50°+60°=110°.問題解決:(1)如圖2,AB∥CD,直線l分別與AB、CD交于點M、N,點P在直線I上運動,當點P在線段MN上運動時(不與點M、N重合),∠PAB=α,∠PCD=β,判斷∠APC、α、β之間的數(shù)量關系并說明理由;(2)在(1)的條件下,如果點P在線段MN或NM的延長線上運動時.請直接寫出∠APC、α、B之間的數(shù)量關系;(3)如圖3,AB∥CD,點P是AB、CD之間的一點(點P在點A、C右側),連接PA、PC,∠BAP和∠DCP的平分線交于點Q.若∠APC=116°,請結合(2)中的規(guī)律,求∠AQC的度數(shù).4.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).5.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點,連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).6.已知,AB∥DE,點C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點C作CF⊥BC交ED的延長線于點F,探究∠ABC和∠F之間的數(shù)量關系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點G,連接GB并延長至點H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據(jù)以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據(jù)以上規(guī)律求1+3+32+…+349+350的結果.8.閱讀下列解題過程:為了求的值,可設,則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:9.[閱讀材料]∵,即,∴,∴的整數(shù)部分為1,∴的小數(shù)部分為[解決問題](1)填空:的小數(shù)部分是__________;(2)已知是的整數(shù)部分,是的小數(shù)部分,求代數(shù)式的平方根為______.10.先閱讀材料,再解答問題:我國數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根,華羅庚脫口而出,給出了答案,眾人十分驚訝,忙問計算的奧妙,你知道華羅庚怎樣迅速而準確地計算出結果嗎?請你按下面的步驟也試一試:(1)我們知道,,那么,請你猜想:59319的立方根是_______位數(shù)(2)在自然數(shù)1到9這九個數(shù)字中,________,________,________.猜想:59319的個位數(shù)字是9,則59319的立方根的個位數(shù)字是________.(3)如果劃去59319后面的三位“319”得到數(shù)59,而,,由此可確定59319的立方根的十位數(shù)字是________,因此59319的立方根是________.(4)現(xiàn)在換一個數(shù)103823,你能按這種方法得出它的立方根嗎?11.對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數(shù)值______.如果我們對a連續(xù)求根整數(shù),直到結果為1為止.例如:對10連續(xù)求根整數(shù)2次=1,這時候結果為1.(3)對100連續(xù)求根整數(shù),____次之后結果為1.(4)只需進行3次連續(xù)求根整數(shù)運算后結果為1的所有正整數(shù)中,最大的是____.12.如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個等比數(shù)列的第n項,那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進行:令S=1+2+4+8+16+…+230…①等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q≠1,請用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.13.如圖,已知點,點,且,滿足關系式.(1)求點、的坐標;(2)如圖1,點是線段上的動點,軸于點,軸于點,軸于點,連接、.試探究,之間的數(shù)量關系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點,當三角形和三角形的面積相等時,求移動時間和點的坐標.14.如圖,已知//,點是射線上一動點(與點不重合),分別平分和,分別交射線于點.(1)當時,的度數(shù)是_______;(2)當,求的度數(shù)(用的代數(shù)式表示);(3)當點運動時,與的度數(shù)之比是否隨點的運動而發(fā)生變化?若不變化,請求出這個比值;若變化,請寫出變化規(guī)律.(4)當點運動到使時,請直接寫出的度數(shù).15.如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,,,其中a、b滿足關系式:.______,______,的面積為______;如圖2,石于點C,點P是線段OC上一點,連接BP,延長BP交AC于點當時,求證:BP平分;提示:三角形三個內角和等于如圖3,若,點E是點A與點B之間上一點連接CE,且CB平分問與有什么數(shù)量關系?請寫出它們之間的數(shù)量關系并請說明理由.16.閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對應的點與原點的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對應的點之間的距離;例1.解方程,因為在數(shù)軸上到原點的距離為的點對應的數(shù)為,所以方程的解為.例2.解不等式,在數(shù)軸上找出的解(如圖),因為在數(shù)軸上到對應的點的距離等于的點對應的數(shù)為或,所以方程的解為或,因此不等式的解集為或.參考閱讀材料,解答下列問題:(1)方程的解為;(2)解不等式:;(3)解不等式:.17.在平面直角坐標系中,如圖正方形的頂點,坐標分別為,,點,坐標分別為,,且,以為邊作正方形.設正方形與正方形重疊部分面積為.(1)①當點與點重合時,的值為______;②當點與點重合時,的值為______.(2)請用含的式子表示,并直接寫出的取值范圍.18.如圖,在長方形ABCD中,AB=8cm,BC=6cm,點E是CD邊上的一點,且DE=2cm,動點P從A點出發(fā),以2cm/s的速度沿A→B→C→E運動,最終到達點E.設點P運動的時間為t秒.(1)請以A點為原點,AB所在直線為x軸,1cm為單位長度,建立一個平面直角坐標系,并用t表示出點P在不同線段上的坐標.(2)在(1)相同條件得到的結論下,是否存在P點使△APE的面積等于20cm2時,若存在,請求出P點坐標;若不存在,請說明理由.19.閱讀下列材料,解答下面的問題:我們知道方程有無數(shù)個解,但在實際生活中我們往往只需求出其正整數(shù)解.例:由,得:,(x、y為正整數(shù))∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質,可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為問題:(1)請你寫出方程的一組正整數(shù)解:.(2)若為自然數(shù),則滿足條件的x值為.(3)七年級某班為了獎勵學習進步的學生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?20.每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機器,現(xiàn)有甲、乙兩種型號的機器可選,其中每臺的價格、產(chǎn)量如下表:甲型機器乙型機器價格(萬元/臺)ab產(chǎn)量(噸/月)240180經(jīng)調查:購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元.(1)求a、b的值;(2)若該公司購買新機器的資金不超過216萬元,請問該公司有哪幾種購買方案?(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設計一種最省錢的購買方案.21.為鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費.下表是該市居民“一戶一表”生活用水階梯式計費價格表的部分信息,請解答:自來水銷售價格每戶每月用水量單位:元/噸15噸及以下超過15噸但不超過25噸的部分超過25噸的部分5(1)小王家今年3月份用水20噸,要交水費___________元;(用,的代數(shù)式表示)(2)小王家今年4月份用水21噸,交水費48元;鄰居小李家4月份用水27噸,交水費70元,求,的值.(3)在第(2)題的條件下,若交水費76.5元,求本月用水量.(4)在第(2)題的條件下,小王家5月份用水量與4月份用水量相同,卻發(fā)現(xiàn)要比4月份多交9.6元錢水費,小李告訴小王說:“水價調整了,表中表示單位的,的值分別上調了整數(shù)角錢(沒超過1元),其他都沒變.”到底上調了多少角錢呢?請你幫小王求出符合條件的所有可能情況.22.已知,在平面直角坐標系中,三角形三個頂點的坐標分別為,,,軸,且、滿足.(1)則______;______;______;(2)如圖1,在軸上是否存在點,使三角形的面積等于三角形的面積?若存在,請求出點的坐標;若不存在,請說明理由;(3)如圖2,連接交于點,點在軸上,若三角形的面積小于三角形的面積,直接寫出的取值范圍是______.23.閱讀感悟:有些關于方程組的問題,要求的結果不是每一個未知數(shù)的值,而是關于未知數(shù)的代數(shù)式的值,如以下問題:已知實數(shù)、滿足①,②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得、的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數(shù)的系數(shù)之間的關系,本題還可以通過適當變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.解決問題:(1)已知二元一次方程組,則_______,_______;(2)某班級組織活動購買小獎品,買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元,則購買6支水筆、6塊橡皮、6本記事本共需多少元?(3)對于實數(shù)、,定義新運算:,其中、、是常數(shù),等式右邊是通常的加法和乘法運算.已知,,那么_______.24.閱讀材料:關于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因為解得.因為t為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請直接寫出答案.25.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉化為不等式組求解,如;方法二,利用不等式的性質直接求解,雙連不等式的左、中、右同時減去1,得,然后同時除以2,得.解決下列問題:(1)請你寫一個雙連不等式并將它轉化為不等式組;(2)利用不等式的性質解雙連不等式;(3)已知,求的整數(shù)值.26.閱讀理解:例1.解方程|x|=2,因為在數(shù)軸上到原點的距離為2的點對應的數(shù)為±2,所以方程|x|=2的解為x=±2.例2.解不等式|x﹣1|>2,在數(shù)軸上找出|x﹣1|=2的解(如圖),因為在數(shù)軸上到1對應的點的距離等于2的點對應的數(shù)為﹣1或3,所以方程|x﹣1|=2的解為x=﹣1或x=3,因此不等式|x﹣1|>2的解集為x<﹣1或x>3.參考閱讀材料,解答下列問題:(1)方程|x﹣2|=3的解為;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)對于任意數(shù)x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范圍.27.使方程(組)與不等式(組)同時成立的末知數(shù)的值稱為此方程(組)和不等式(組)的“理想解”.例:已知方程2x﹣3=1與不等式x+3>0,當x=2時,2x﹣3=2×2﹣3=1,x+3=2+3=5>0同時成立,則稱x=2是方程2x﹣3=1與不等式x+3>0的“理想解”.(1)已知①,②2(x+3)<4,③<3,試判斷方程2x+3=1的解是否是它們中某個不等式的“理想解”,寫出過程;(2)若是方程x﹣2y=4與不等式的“理想解”,求x0+2y0的取值范圍.28.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.29.如圖所示,A(1,0),點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,點C的坐標為(﹣3,2).(1)直接寫出點E的坐標;(2)在四邊形ABCD中,點P從點O出發(fā),沿OB→BC→CD移動,若點P的速度為每秒1個單位長度,運動時間為t秒,請解決以下問題;①當t為多少秒時,點P的橫坐標與縱坐標互為相反數(shù);②當t為多少秒時,三角形PEA的面積為2,求此時P的坐標30.我區(qū)防汛指揮部在一河道的危險地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時針旋轉至便立即逆時針旋轉至,如此循環(huán)燈光射線自順時針旋轉至便立即逆時針旋轉至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉動的速度是度/秒,燈轉動的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉動24秒,燈的光射線才開始轉動,在燈的光射線到達之前,燈轉動幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時開始轉動照射,在燈的光射線到達之前,若兩燈射出的光射線交于點,過點作交于點,則在轉動的過程中,與間的數(shù)量關系是否發(fā)生變化?若不變,請求出這兩角間的數(shù)量關系;若改變,請求出各角的取值范圍.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負數(shù)的性質即可求得a、b的值;(2)先求得S△ABC=4,設P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點P的坐標;(3)①已知BD∥AC,根據(jù)兩直線平行,內錯角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結論,可求得∠3+∠4=45°;過點E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點睛】本題考查了坐標與圖形性質,熟知非負數(shù)的性質、三角形的面積公式及平行線的性質是解決問題的關鍵.2.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質和直角三角形內角關系即可求解.(2)過點B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結論,結合角平分線性質即可求解.【詳解】解:(1)如圖1,設AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質,畫輔助線,找到角的和差倍分關系是求解本題的關鍵.3.(1)∠APC=α+β,理由見解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過點P作PE∥AB,根據(jù)平行線的判定與性質即可求解;(2)分點P在線段MN或NM的延長線上運動兩種情況,根據(jù)平行線的判定與性質及角的和差即可求解;(3)過點P,Q分別作PE∥AB,QF∥AB,根據(jù)平行線的判定與性質及角的和差即可求解.【詳解】解:(1)如圖2,過點P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如圖,在(1)的條件下,如果點P在線段MN的延長線上運動時,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如圖,在(1)的條件下,如果點P在線段NM的延長線上運動時,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如圖3,過點P,Q分別作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【點睛】此題考查了平行線的判定與性質,添加輔助線將兩條平行線相關的角聯(lián)系到一起是解題的關鍵.4.(1);(2)①;②【分析】(1)由平行線的性質得到,由折疊的性質可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質得到,再由折疊的性質及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點睛】此題考查了平行線的性質,屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內錯角相等”及折疊的性質是解題的關鍵.5.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質得出∠ABF=∠BFE,∠DCF=∠EFC,進而解答即可;(2)由(1)的結論和垂直的定義解答即可;(3)由(1)的結論和三角形的角的關系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點睛】本題主要考查平行線的性質,解決本題的關鍵是根據(jù)平行線的性質解答.6.(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結論;(3)過點作,延長至點,先根據(jù)平行線的性質可得,,從而可得,再根據(jù)角平分線的定義、結合(2)的結論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點作,,,,,即,,;(2)如圖,過點作,,,,,即,,,,,;(3)如圖,過點作,延長至點,,,,,平分,平分,,由(2)可知,,,又,.【點睛】本題考查了平行線的性質、對頂角相等、角平分線的定義等知識點,熟練掌握平行線的性質是解題關鍵.7.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(2)先歸納總結出規(guī)律,然后按規(guī)律解答即可;(3)先利用得出規(guī)律的變形,然后利用規(guī)律解答即可.【詳解】解:(1)根據(jù)題意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根據(jù)題意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案為:(1)x7-1;(2)xn+1-1;(3).【點睛】本題考查了平方差公式以及規(guī)律型問題,弄清題意、發(fā)現(xiàn)數(shù)字的變化規(guī)律是解答本題的關鍵.8.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設,則,∴,∴即:(3)設,則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關鍵.9.(1);(2)±3.【分析】(1)由于4<7<9,可求的整數(shù)部分,進一步得出的小數(shù)部分;(2)先求出的整數(shù)部分和小數(shù)部分,再代入代數(shù)式進行計算即可.【詳解】解:(1)∵4<7<9,∴,即,∴,∴的整數(shù)部分為2,∴的小數(shù)部分為;(2)∵是的整數(shù)部分,是的小數(shù)部分,9<10<16,∴,即,∴,∴的整數(shù)部分為3,的小數(shù)部分為,即有,,∴9的平方根為±3.∴的平方根為±3.【點睛】本題考查了估算無理數(shù)的大?。豪猛耆椒綌?shù)和算術平方根對無理數(shù)的大小進行估算.10.(1)兩;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根據(jù)夾逼法和立方根的定義進行解答;(2)先分別求得1至9中奇數(shù)的立方,然后根據(jù)末位數(shù)字是幾進行判斷即可;(3)先利用(2)中的方法判斷出個數(shù)數(shù)字,然后再利用夾逼法判斷出十位數(shù)字即可;(4)利用(3)中的方法確定出個位數(shù)字和十位數(shù)字即可.【詳解】(1)∵1000<59319<1000000,∴59319的立方根是兩位數(shù);(2)∵125,343,729,∴59319的個位數(shù)字是9,則59319的立方根的個位數(shù)字是9;(3)∵,且59319的立方根是兩位數(shù),∴59319的立方根的十位數(shù)字是3,又∵59319的立方根的個位數(shù)字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是兩位數(shù);∵125,343,729,∴103823的個位數(shù)字是3,則103823的立方根的個位數(shù)字是7;∵,且103823的立方根是兩位數(shù),∴103823的立方根的十位數(shù)字是4,又∵103823的立方根的個位數(shù)字是7,∴103823的立方根是47.【點睛】考查了立方根的概念和求法,解題關鍵是理解一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù).11.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對120進行連續(xù)求根整數(shù),可得3次之后結果為1;(4)最大的正整數(shù)是255,根據(jù)操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點睛】本題考查了估算無理數(shù)的大小的應用,主要考查學生的閱讀能力和猜想能力,同時也考查了一個數(shù)的平方數(shù)的計算能力.12.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點睛】本題考查了整式的混合運算的應用,主要考查學生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.13.(1);(2);(3),點C的坐標為【分析】(1)由題意易得,然后可求a、b的值,進而問題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過點作軸于點P,軸于點Q,由題意易得,然后可得,進而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點,點;(2)由(1)可得點,點,∵軸于點,軸于點,軸于點,∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點作軸于點P,軸于點Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點睛】本題主要考查圖形與坐標、算術平方根與偶次冪的非負性及等積法,熟練掌握圖形與坐標、算術平方根與偶次冪的非負性及等積法是解題的關鍵.14.(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質:兩直線平行同旁內角互補可得;(2)由平行線的性質可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當∠ACB=∠ABD時有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不變,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,當∠ACB=∠ABD時,則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【點睛】本題主要考查平行線的性質和角平分線的定義,熟練掌握平行線的性質是解題的關鍵.15.(1);;6;(2)證明見解析;(3)
,理由見解析.【詳解】分析:(1)求出CD的長度,再根據(jù)三角形的面積公式列式計算即可得解;(2)根據(jù)等角的余角相等解答即可;(3)首先證明∠ACD=∠ACE,推出∠DCE=2∠ACD,再證明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解決問題;【解答】(1)解:如圖1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵點C(0,-4),D(-3,-4),∴CD=3,且CD∥x軸,∴△BCD的面積=×4×3=6;故答案為-4,-3,6.(2)如圖2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如圖3中,結論:∠BEC=2∠BCO.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-4),D(-3,-4),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,點睛:本題考查了坐標與圖形性質,三角形的角平分線,三角形的面積,三角形的內角和定理,三角形的外角性質等知識,熟記性質并準確識圖是解題的關鍵.16.(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3.【分析】(1)利用在數(shù)軸上到-3對應的點的距離等于5的點的對應的數(shù)為2或-8求解即可;(2)先求出的解,再求出的解集即可;(3)先在數(shù)軸上找出的解,即可得出的解集.【詳解】解:(1)∵在數(shù)軸上到-3對應的點的距離等于5的點的對應的數(shù)為2或-8∴方程的解為x=2或x=-8(2)∵在數(shù)軸上到2對應的點的距離等于3的點的對應的數(shù)為-1或5∴方程的解為x=-1或x=5∴的解集為-1≤x≤5.(3)由絕對值的幾何意義可知,方程就是求在數(shù)軸上到4和-2對應的點的距離之和等于8的點對應的x的值.∵在數(shù)軸上4和-2對應的點的距離是6∴滿足方程的x的點在4的右邊或-2的左邊若x對應的點在4的右邊,可得x=5;若x對應的點在-2的左邊,可得x=-3∴方程的解為x=5或x=-3∴的解集為x>5或x<-3.故答案為(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3.【點睛】本題考查了絕對值及不等式的知識.解題的關鍵是理解表示在數(shù)軸上數(shù)與數(shù)對應的點之間的距離.17.(1)①1;②;(2).【分析】(1)①②根據(jù)點F的坐標構建方程即可解決問題.(2)分四種情形:①如圖1中,當1≤m≤2時,重疊部分是四邊形BEGN.②如圖2中,當0<m<1時,重疊部分是正方形EFGH.③如圖3中,-1<m<時,重疊部分是矩形AEHN.④如圖4中,當-≤m<0時,重疊部分是正方形EFGH.分別求解即可解決問題.【詳解】解:(1)①當點F與點B重合時,由題意3m=3,∴m=1.②當點F與點A重合時,由題意3m=-1,∴m=,故答案為1,.(2)①當時,如圖1.,..②當時,如圖2...③當時,如圖3.,.④當時,如圖4...綜上,.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,平移變換,四邊形的面積等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考??碱}型.18.(1)建立直角坐標系見解析,當0<t≤4時,即當點P在線段AB上時,其坐標為:P(2t,0),當4<t≤7時,即當點P在線段BC上時,其坐標為:P(8,2t﹣8),當7<t≤10時,即當點P在線段CE上時,其坐標為:P(22﹣2t,6);(2)存在,當點P的坐標分別為:P(,0)或P(8,4)時,△APE的面積等于.【分析】(1)建立平面直角坐標系,根據(jù)點P的運動速度分別求出點P在線段AB,BC,CE上的坐標;(2)根據(jù)(1)中得到的點P的坐標以及,分別列出三個方程并解出此時t的值再進行討論.【詳解】(1)正確畫出直角坐標系如下:當0<t≤4時,點P在線段AB上,此時P點的橫坐標為,其縱坐標為0;∴此時P點的坐標為:P(2t,0);同理:當4<t≤7時,點P在線段BC上,此時P點的坐標為:P(8,2t﹣8);當7<t≤10時,點P在線段CE上,此時P點的坐標為:P(22﹣2t,6).(2)存在,①如圖1,當0<t≤4時,點P在線段AB上,,解得:t(s);∴P點的坐標為:P(,0).②如圖2,當4<t≤7時,點P在線段BC上,;∴;解得:t=6(s);∴點P的坐標為:P(8,4).③如圖3,當7<t≤10時,點P在線段CE上,;解得:t(s);∵7,∴t(應舍去),綜上所述:當P點的坐標為:P(,0)或P(8,4)時,△APE的面積等于.【點睛】本題考查了三角形的面積的計算公式,,在本題計算的過程中根據(jù)動點的坐標正確地求出三角形的底邊長度和高是解題的關鍵.19.(1)方程的正整數(shù)解是或.(只要寫出其中的一組即可);(2)滿足條件x的值有4個:x=3或x=4或x=5或x=8;(3)有兩種購買方案:即購買單價為3元的筆記本5本,單價為5元的鋼筆4支;或購買單價為3元的筆記本10本,單價為5元的鋼筆1支.【解析】(1)---------------------------.(2)C(3)解:設購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,由題意得:3x+5y=35此方程的正整數(shù)解為有兩種購買方案:方案一:購買單價為3元的筆記本5個,購買單價為5元的鋼筆4支.方案二:購買單價為3元的筆記本10個,購買單價為5元的鋼筆1支(1)只要使等式成立即可(2)x-2必須是6的約數(shù)(3)設購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,根據(jù)題意列二元一次方程,去正整數(shù)解求值20.(1);(2)有4種方案:3臺甲種機器,7臺乙種機器;2臺甲種機器,8臺乙種機器;1臺甲種機器,9臺乙種機器;10臺乙種機器.(3)最省錢的方案是購買2臺甲種機器,8臺乙種機器.【分析】(1)根據(jù)購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元這一條件建立一元二次方程組求解即可,(2)設買了x臺甲種機器,根據(jù)該公司購買新機器的資金不超過216萬元,建立一次不等式求解即可,(3)將兩種機器生產(chǎn)的產(chǎn)量相加,使總產(chǎn)量不低于1890噸,求出x的取值范圍,再分別求出對應的成本即可解題.【詳解】(1)解:由題意得,解得,;(2)解:設買了x臺甲種機器由題意得:30+18(10-x)≤216解得:x≤3∵x為非負整數(shù)∴x=0、1、2、3∴有4種方案:3臺甲種機器,7臺乙種機器;2臺甲種機器,8臺乙種機器;1臺甲種機器,9臺乙種機器;10臺乙種機器.(3)解:由題意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整數(shù)x=2或3當x=2時購買費用=30×2+18×8=204(元)當x=3時購買費用=30×3+18×7=216(元)∴最省錢的方案是購買2臺甲種機器,8臺乙種機器.【點睛】本題考查了利潤的實際應用,二元一次方程租的實際應用,一元一次不等式的實際應用,難度較大,認真審題,找到等量關系和不等關系并建立方程組和不等式組是解題關鍵.21.;;噸;的值上調了時的值上調了或者的值上調了時的值上調了.【分析】(1)小王家今年3月份用水20噸,超過15噸,所以分兩部分計費,15噸及以下費用為,超過15噸的費用為,故總費用;(2)依題意列方程組,可求解;(3)在第(2)題的條件下,正好25噸時,所需費用(元),可知若交水費76.5元,肯定用水超過25噸,可得用水量;(4)由小王家5月份用水量與4月份用水量相同與要比4月份多交9.6元錢水費,可列方程,滿足方程的條件的解列出即所求.【詳解】解:(1)小王家今年3月份用水20噸,要交消費為,故答案為:;(2)根據(jù)題意得,,解得:;(3)在第(2)題的條件下,當正好25噸時,可得費用(元),由交水費76.5元可知,小王家用水量超過25噸,即:超過25噸的用水量噸,合計本月用水量噸(4)設上調了元,上調了元,根據(jù)題意得:,,為整數(shù)角線(沒超過1元),當時,元,當時,元,的值上調了時,的值上調了;的值上調了時,的值上調了.【點睛】本題考查了二元一次方程組的實際應用,并學會看圖提練已知,用二元一次方程列舉法來表示解.22.(1)?3,4,4;(2)(0,)或(0,);(3)n<?5或n>?1【分析】(1)根據(jù)非負數(shù)的性質構建方程組,求出a和b,再根據(jù)BC∥x軸,可得c的值;(2)當點D在直線AB的下方時,如圖1?1中,延長BC交y軸于E(0,4),連接AE.設D(0,m).當點D在直線AB的上方時,如圖1?2中,連接OB,設D(0,m).分別構建方程,可得結論.(3)如圖2中,當點N在點A的右側時,連接MN,OB,設M(a,b),利用面積法求出b的值,再求出S△BNM=S△BCM時,n的值,同法求出當點N在點的左側時,且S△BNM=S△BCM時,n的值,結合圖象可得結論.【詳解】解:(1)∵,又∵≥0,|2a?b+10|≥0,∴a+b?1=0且2a?b+10=0,∴a=?3,b=4,∵BC∥x軸,∴c=4,∴a=?3,b=4,c=4,故答案為:?3,4,4;(2)當點D在直線AB的下方時,如圖1?1中,延長BC交y軸于E(0,4),連接AE.設D(0,m).∵S△ABD=S△AED+S△BDE?S△ABE=S△ABC,∴×(4?m)×3+×(4?m)×4?×4×4=×2×4,∴m=;當點D在直線AB的上方時,如圖1?2中,連接OB,設D(0,m).∵S△ABD=S△ADO+S△ODB?S△ABO=S△ABC,∴×m×3+×m×4?×3×4=×2×4,∴m=.綜上所述,滿足條件的點D的坐標為(0,)或(0,).(3)如圖2中,當點N點A的右側時,連接MN,OB.設M(a,b),∵S△BCM=S△OBC?(S△AOB?S△AOM),∴×2×(4?b)=×2×4?(×3×4?12×3×b),解得b=,當S△BNM=S△BCM時,則有×(n+3)×4?×(n+3)×=×2×(4?),解得n=?1,當點N在點A的左側時,且S△BNM=S△BCM時,同法可得n=?5,觀察圖象可知,滿足條件的n的值為n<?5或n>?1.【點睛】本題屬于三角形綜合題,考查了三角形的面積,非負數(shù)的性質,平行線的性質等知識,解題的關鍵是學會用分類討論的思想思考問題,學會利用未知數(shù)構建方程解決問題,對于初一學生來說題目有一定的難度.23.(1);5;(2)購買6支水筆、6塊橡皮、6本記事本共需48元;(3).【分析】(1)利用①?②可得x-y的值,利用可得出x+y的值;(2)設鉛筆的單價為m元,橡皮的單價為元,記事本的單價為元,根據(jù)“買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元”,即可得出關于m,n,p的三元一次方程組,由2×①-②可得的值,再乘5即可求得結果;(3)根據(jù)新運算的定義可得出關于a,b,c的三元一次方程組,由3×①?2×②可得出的值,從而可求得結果.【詳解】(1)由①?②可得:x-y=-1,由可得x+y=5故答案為:;5.(2)設水筆的單價為元,橡皮的單價為元,記事本的單價為元,依題意,得:,由可得,.故購買6支水筆、6塊橡皮、6本記事本共需48元.(3)依題意得:由3×①?2×②可得:即故答案為:.【點睛】本題考查了二元一次方程組的應用及三元一次方程組的應用,解題的關鍵是:(1)運用“整體思想”求出x-y,x+y的值;(2)(3)找出等量關系,正確列出三元一次方程組.24.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因為,解得-3<t<2.因為t為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因為t為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關鍵.25.(1)見解析;(2);(3)或【分析】(1),轉化為不等式組;(2)根據(jù)方法二的步驟解答即可;(3)根據(jù)方法二的步驟解答,得出,即可得到結論.【詳解】解:(1),轉化為不等式組;(2),不等式的左、中、右同時減去3,得,同時除以,得;(3),不等式的左、中、右同時乘以3,得,同時加5,得,的整數(shù)值或.【點睛】本題考查了解一元一次不等式組,參照方法二解不等式組是解題的關鍵,應用的是不等式的性質.26.(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在數(shù)軸上到2對應的點的距離等于3的點對應的數(shù)求解即可;(2)先求出|x-2|=3的解,再求|x-2|≤3的解集即可;(3)先在數(shù)軸上找出|x-4|+|x+2|=8的解,即可得出不等式|x-4|+|x+2|>8的解集;(4)原問題轉化為:a大于或等于|x+2|+|x-4|最大值,進行分類討論,即可解答.【詳解】解:(1)∵在數(shù)軸上到2對應的點的距離等于3的點對應的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職美容美體藝術(化妝造型設計)試題及答案
- 2025年大學大一(地理科學)自然地理學基礎理論測試題及答案
- 2025年高職(服裝設計與工藝)服裝結構設計階段測試試題及答案
- 2025年大學第二學年(酒店管理)酒店品牌建設試題及答案
- 2026年泳池安全防護網(wǎng)項目公司成立分析報告
- 2025年高職椰韻紋眉(眉形設計與上色技巧)試題及答案
- 2025年大學大四(生物醫(yī)學工程產(chǎn)業(yè))醫(yī)療器械產(chǎn)業(yè)發(fā)展分析綜合測試題及答案
- 2025年中職(皮革制品設計與制作)皮鞋制作工藝階段測試題及答案
- 2025年大學海洋漁業(yè)科學與技術(漁業(yè)技術)試題及答案
- 2025年中職(珠寶玉石加工與營銷)玉石雕刻工藝階段測試題及答案
- 2024版裝修公司軟裝合同范本
- IABP主動脈球囊反搏課件
- 加壓站清水池建設工程勘察設計招標文件
- 工會制度匯編
- 喪假國家規(guī)定
- 2023年醫(yī)務科工作計劃-1
- 乒乓球社團活動記錄
- 地基與基礎分項工程質量驗收記錄
- 一文多用作文課公開課課件
- 水運工程施工課程設計指導書
- 驚恐障礙診治課件
評論
0/150
提交評論