高中數(shù)列遞增題目及答案_第1頁
高中數(shù)列遞增題目及答案_第2頁
高中數(shù)列遞增題目及答案_第3頁
高中數(shù)列遞增題目及答案_第4頁
高中數(shù)列遞增題目及答案_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高中數(shù)列遞增題目及答案一、單項選擇題1.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=2\),\(a_{1}=1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是()A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列答案:A2.在等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}<0\),\(d>0\),則數(shù)列\(zhòng)(\{a_{n}\}\)是()A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列答案:A3.已知等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比\(q>1\),\(a_{1}>0\),則數(shù)列\(zhòng)(\{a_{n}\}\)是()A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列答案:A4.已知數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式為\(a_{n}=n^{2}-5n+4\),則數(shù)列\(zhòng)(\{a_{n}\}\)的單調(diào)遞增區(qū)間是()A.\((\frac{5}{2},+\infty)\)B.\((2,+\infty)\)C.\((-\infty,\frac{5}{2})\)D.\((-\infty,2)\)答案:A5.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=\frac{a_{n}}{1+a_{n}}\),\(a_{1}=1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是()A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列答案:B6.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{3}<0\),\(a_{4}>0\),則數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\)的最小值是()A.\(S_{3}\)B.\(S_{4}\)C.\(S_{3}\)或\(S_{4}\)D.無法確定答案:A7.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}>0\),\(0<q<1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是()A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列答案:B8.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}-2n+1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是()A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列答案:A9.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=a_{n}+\frac{1}{n(n+1)}\),\(a_{1}=1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是()A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列答案:A10.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}>0\),\(d<0\),且\(\verta_{3}\vert=\verta_{9}\vert\),則數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\)取得最大值時\(n\)的值為()A.5B.6C.5或6D.6或7答案:C二、多項選擇題1.下列數(shù)列中是遞增數(shù)列的有()A.\(a_{n}=2n-3\)B.\(a_{n}=3^{n}\)C.\(a_{n}=(\frac{1}{2})^{n}\)D.\(a_{n}=n^{2}-2n\)答案:AB2.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}<0\),\(d>0\),則下列結(jié)論正確的有()A.數(shù)列\(zhòng)(\{a_{n}\}\)單調(diào)遞增B.數(shù)列\(zhòng)(\{a_{n}\}\)單調(diào)遞減C.當\(n\geq2\)時,\(a_{n}>0\)D.\(S_{n}\)有最小值答案:AD3.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}>0\),\(q>1\),則下列結(jié)論正確的有()A.數(shù)列\(zhòng)(\{a_{n}\}\)單調(diào)遞增B.數(shù)列\(zhòng)(\{a_{n}\}\)單調(diào)遞減C.當\(n\geq2\)時,\(a_{n}>a_{1}\)D.\(S_{n}\)有最小值答案:AC4.已知數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式為\(a_{n}=n^{2}-kn+2\),若數(shù)列\(zhòng)(\{a_{n}\}\)單調(diào)遞增,則\(k\)的取值可以是()A.1B.2C.3D.4答案:ABC5.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(S_{n}\)為其前\(n\)項和,若\(S_{10}<0\),\(S_{11}>0\),則下列結(jié)論正確的有()A.\(a_{1}<0\)B.\(d>0\)C.\(a_{6}>0\)D.\(S_{n}\)的最小值為\(S_{6}\)答案:ABCD三、判斷題1.若數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}>a_{n}\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。()答案:√2.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(d>0\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。()答案:√3.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(q>1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。()答案:×4.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}-1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。()答案:×5.若數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式為\(a_{n}=(-1)^{n}\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。()答案:×6.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}>0\),\(S_{9}=S_{16}\),則\(S_{n}\)取得最大值時\(n=12\)或\(13\)。()答案:√7.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}<0\),\(0<q<1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。()答案:√8.已知數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式為\(a_{n}=2n-1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。()答案:√9.若數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。()答案:√10.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}<0\),\(S_{10}>0\),則\(S_{9}<0\)。()答案:√四、簡答題1.簡述等差數(shù)列\(zhòng)(\{a_{n}\}\)遞增的條件。答案:等差數(shù)列\(zhòng)(\{a_{n}\}\)遞增的條件是公差\(d>0\),即后一項比前一項大。2.簡述等比數(shù)列\(zhòng)(\{a_{n}\}\)遞增的條件。答案:等比數(shù)列\(zhòng)(\{a_{n}\}\)遞增的條件有兩種情況。當\(a_{1}>0\)且\(q>1\)時,數(shù)列遞增;當\(a_{1}<0\)且\(0<q<1\)時,數(shù)列也遞增。3.已知數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式為\(a_{n}=2n-1\),證明數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。答案:對于\(a_{n}=2n-1\),\(a_{n+1}-a_{n}=[2(n+1)-1]-(2n-1)=2>0\),所以\(a_{n+1}>a_{n}\),數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。4.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(d=3\),求數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\)的最小值。答案:由\(a_{n}=a_{1}+(n-1)d=2+3(n-1)=3n-1\)。令\(a_{n}\leq0\),即\(3n-1\leq0\),解得\(n\leq\frac{1}{3}\),因為\(n\)為正整數(shù),所以當\(n=1\)時,\(a_{n}\)最小為\(2\)。\(S_{n}=na_{1}+\frac{n(n-1)}{2}d=2n+\frac{3n(n-1)}{2}=\frac{3}{2}n^{2}+\frac{1}{2}n\),當\(n=1\)時,\(S_{n}\)最小為\(\frac{3}{2}+\frac{1}{2}=2\)。五、討論題1.討論等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(S_{n}\)與\(S_{2n}-S_{n}\)的大小關(guān)系。答案:設(shè)等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\),\(S_{n}=na_{1}+\frac{n(n-1)}{2}d\),\(S_{2n}=2na_{1}+\frac{2n(2n-1)}{2}d\),則\(S_{2n}-S_{n}=2na_{1}+\frac{2n(2n-1)}{2}d-(na_{1}+\frac{n(n-1)}{2}d)=na_{1}+\frac{n(3n-1)}{2}d\)。\(S_{2n}-S_{n}-S_{n}=na_{1}+\frac{n(3n-1)}{2}d-(na_{1}+\frac{n(n-1)}{2}d)=\frac{n(2n)}{2}d=n^{2}d\)。當\(d>0\)時,\(n^{2}d>0\),即\(S_{2n}-S_{n}>S_{n}\);當\(d=0\)時,\(n^{2}d=0\),即\(S_{2n}-S_{n}=S_{n}\);當\(d<0\)時,\(n^{2}d<0\),即\(S_{2n}-S_{n}<S_{n}\)。2.討論等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(S_{n}\)與\(S_{2n}-S_{n}\)的大小關(guān)系。答案:設(shè)等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\),首項為\(a_{1}\)。當\(q=1\)時,\(S_{n}=na_{1}\),\(S_{2n}=2na_{1}\),則\(S_{2n}-S_{n}=2na_{1}-na_{1}=na_{1}\),所以當\(a_{1}>0\)時,\(S_{2n}-S_{n}>S_{n}\);當\(a_{1}<0\)時,\(S_{2n}-S_{n}<S_{n}\)。當\(q\neq1\)時,\(S_{n}=\frac{a_{1}(1-q^{n})}{1-q}\),\(S_{2n}=\frac{a_{1}(1-q^{2n})}{1-q}\),則\(S_{2n}-S_{n}=\frac{a_{1}(1-q^{2n})}{1-q}-\frac{a_{1}(1-q^{n})}{1-q}=\frac{a_{1}(q^{n}-q^{2n})}{1-q}=\frac{a_{1}q^{n}(1-q^{n})}{1-q}\)。當\(q>1\)或\(q<0\)時,若\(a_{1}>0\)且\(1-q^{n}>0\),則\(S_{2n}-S_{n}>S_{n}\);若\(a_{1}<0\)且\(1-q^{n}<0\),則\(S_{2n}-S_{n}<S_{n}\)。當\(0<q<1\)時,若\(a_{1}>0\)且\(1-q^{n}<0\),則\(S_{2n}-S_{n}>S_{n}\);若\(a_{1}<0\)且\(1-q^{n}>0\),則\(S_{2n}-S_{n}<S_{n}\)。3.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),且\(S_{10}=100\),\(S_{100}=10\),求\(S_{110}\)。答案:設(shè)等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論