版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》章節(jié)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、已知:如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過E作弦GF⊥BC交圓與G、F兩點(diǎn),連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是()A.①②④ B.③④ C.①②③ D.①②③④2、如圖,AB為的直徑,C,D為上的兩點(diǎn),若,則的度數(shù)為(
)A. B. C. D.3、若某圓錐的側(cè)面展開圖是一個(gè)半圓,已知圓錐的底面半徑為r,那么圓錐的高為(
)A. B. C. D.4、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(
)A. B. C. D.5、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m6、如圖,已知是的兩條切線,A,B為切點(diǎn),線段交于點(diǎn)M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個(gè)數(shù)是(
)A.1 B.2 C.3 D.47、已知平面內(nèi)有和點(diǎn),,若半徑為,線段,,則直線與的位置關(guān)系為(
)A.相離 B.相交 C.相切 D.相交或相切8、如圖,已知在中,是直徑,,則下列結(jié)論不一定成立的是(
)A. B.C. D.到、的距離相等9、如圖所示,MN為⊙O的弦,∠N=52°,則∠MON的度數(shù)為(
)A.38° B.52° C.76° D.104°10、如圖,、為⊙O的切線,切點(diǎn)分別為A、B,交于點(diǎn)C,的延長線交⊙O于點(diǎn)D.下列結(jié)論不一定成立的是(
)A.為等腰三角形 B.與相互垂直平分C.點(diǎn)A、B都在以為直徑的圓上 D.為的邊上的中線第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,正五邊形ABCDE內(nèi)接于⊙O,點(diǎn)F在上,則∠CFD=_____度.2、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點(diǎn)A處繞圓錐側(cè)面一周又回到點(diǎn)A處,則小蟲所走的最短路程為___________(結(jié)果保留根號(hào))3、如圖,,,以為直徑作半圓,圓心為點(diǎn);以點(diǎn)為圓心,為半徑作,過點(diǎn)作的平行線交兩弧于點(diǎn)、,則陰影部分的面積是________.4、如圖,四邊形ABCD為⊙O的內(nèi)接正四邊形,△AEF為⊙O的內(nèi)接正三角形,連接DF.若DF恰好是同圓的一個(gè)內(nèi)接正多邊形的一邊,則這個(gè)正多邊形的邊數(shù)為_____.5、如圖所示是一個(gè)幾何體的三視圖,如果一只螞蟻從這個(gè)幾何體的點(diǎn)出發(fā),沿表面爬到的中點(diǎn)處,則最短路線長為__________.6、一個(gè)扇形的弧長是,面積是,則這個(gè)扇形的圓心角是___度.7、已知的半徑為,直線與相交,則圓心到直線距離的取值范圍是__________.8、如圖1是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓弧(弧MN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.9、如圖所示,AB、AC為⊙O的兩條弦,延長CA到點(diǎn)D,AD=AB,若∠ADB=35°,則∠BOC=________.10、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,△ABC內(nèi)接于⊙O,∠A=30°,過圓心O作OD⊥BC,垂足為D.若⊙O的半徑為6,求OD的長.2、如圖,OC為⊙O的半徑,弦AB⊥OC于點(diǎn)D,OC=10,CD=4,求AB的長.3、如圖,已知等邊△ABC內(nèi)接于☉O,BD為內(nèi)接正十二邊形的一邊,CD=5cm,求☉O的半徑R.4、如圖,正五邊形內(nèi)接于,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),求的余角的度數(shù).5、如圖,已知的直徑為,于點(diǎn),與相交于點(diǎn),在上取一點(diǎn),使得.(1)求證:是的切線;(2)填空:①當(dāng),時(shí),則___________.②連接,當(dāng)?shù)亩葦?shù)為________時(shí),四邊形為正方形.-參考答案-一、單選題1、A【解析】【分析】連接BD、OC、AG、AC,過O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,從而有弧AC=弧AD,由垂徑定理的推論即可判斷①的正誤;由CD⊥PB可得到∠P+∠PCD=90°,結(jié)合∠P=∠DCO、等邊對(duì)等角的知識(shí)等量代換可得到∠PCO=90°,據(jù)此可判斷②的正誤;假設(shè)OD∥GF成立,則可得到∠ABC=30°,判斷由已知條件能否得到∠ABC的度數(shù)即可判斷③的正誤;求出CF=AG,根據(jù)垂徑定理和三角形中位線的知識(shí)可得到CQ=OZ,通過證明△OCQ≌△BOZ可得到OQ=BZ,結(jié)合垂徑定理即可判斷④.【詳解】連接BD、OC、AG,過O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直徑,∴CD⊥AB,∴①正確;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切線,∴②正確;假設(shè)OD∥GF,則∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知沒有給出∠B=30°,∴③錯(cuò)誤;∵AB是直徑,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正確.故選A.【考點(diǎn)】本題是圓的綜合題,考查了垂徑定理及其推論,切線的判定,等腰三角形的性質(zhì),平行線的性質(zhì),全等三角形的判定與性質(zhì).解答本題的關(guān)鍵是熟練掌握?qǐng)A的有關(guān)知識(shí)點(diǎn).2、B【解析】【分析】連接AD,如圖,根據(jù)圓周角定理得到,,然后利用互余計(jì)算出,從而得到的度數(shù).【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點(diǎn)】本題主要考查了同弦所對(duì)的圓周角相等,直徑所對(duì)的圓周角是直角,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.3、C【解析】【分析】設(shè)圓錐母線長為R,由題意易得圓錐的母線長為,然后根據(jù)勾股定理可求解.【詳解】解:設(shè)圓錐母線長為R,由題意得:∵圓錐的側(cè)面展開圖是一個(gè)半圓,已知圓錐的底面半徑為r,∴根據(jù)圓錐側(cè)面展開圖的弧長和圓錐底面圓的周長相等可得:,∴,∴圓錐的高為;故選C.【考點(diǎn)】本題主要考查圓錐側(cè)面展開圖及弧長計(jì)算公式,熟練掌握?qǐng)A錐的特征及弧長計(jì)算公式是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識(shí)點(diǎn),能求出CE=DE是解此題的關(guān)鍵.5、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點(diǎn)】本題考查了垂徑定理和勾股定理等知識(shí);熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.6、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點(diǎn),連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯(cuò)誤,綜上:正確的說法是個(gè),故選C.【考點(diǎn)】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識(shí)是解題的關(guān)鍵.7、D【解析】【分析】根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法進(jìn)行判斷.【詳解】解:∵⊙O的半徑為2cm,線段OA=3cm,線段OB=2cm,即點(diǎn)A到圓心O的距離大于圓的半徑,點(diǎn)B到圓心O的距離等于圓的半徑,∴點(diǎn)A在⊙O外.點(diǎn)B在⊙O上,∴直線AB與⊙O的位置關(guān)系為相交或相切,故選:D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,正確的理解題意是解題的關(guān)鍵.8、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關(guān)系即可得出答案.【詳解】在中,弦弦,則其所對(duì)圓心角相等,即,所對(duì)優(yōu)弧和劣弧分別相等,所以有,故B項(xiàng)和C項(xiàng)結(jié)論正確,∵,AO=DO=BO=CO∴(SSS)可得出點(diǎn)到弦,的距離相等,故D項(xiàng)結(jié)論正確;而由題意不能推出,故A項(xiàng)結(jié)論錯(cuò)誤.故選:A【考點(diǎn)】此題主要考查圓的基本性質(zhì),解題的關(guān)鍵是熟知圓心角、弧、弦之間的關(guān)系.9、C【解析】【分析】根據(jù)半徑相等得到OM=ON,則∠M=∠N=52°,然后根據(jù)三角形內(nèi)角和定理計(jì)算∠MON的度數(shù).【詳解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故選C.【考點(diǎn)】本題考查了圓的認(rèn)識(shí):掌握與圓有關(guān)的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).10、B【解析】【分析】連接OB,OC,令M為OP中點(diǎn),連接MA,MB,證明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出為等腰三角形,可判斷A;根據(jù)△OBP與△OAP為直角三角形,OP為斜邊,可得PM=OM=BM=AM,可判斷C;證明△OBC≌△OAC,可得PC⊥AB,根據(jù)△BPA為等腰三角形,可判斷D;無法證明與相互垂直平分,即可得出答案.【詳解】解:連接OB,OC,令M為OP中點(diǎn),連接MA,MB,∵B,C為切點(diǎn),∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴為等腰三角形,故A正確;∵△OBP與△OAP為直角三角形,OP為斜邊,∴PM=OM=BM=AM∴點(diǎn)A、B都在以為直徑的圓上,故C正確;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA為等腰三角形,∴為的邊上的中線,故D正確;無法證明與相互垂直平分,故選:B.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),圓的性質(zhì),掌握知識(shí)點(diǎn)靈活運(yùn)用是解題關(guān)鍵.二、填空題1、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).2、6【解析】【分析】利用圓錐的底面周長等于側(cè)面展開圖的弧長可得圓錐側(cè)面展開圖的圓心角,求出側(cè)面展開圖中兩點(diǎn)間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設(shè)圓錐的側(cè)面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點(diǎn)】本題考查了圓錐的計(jì)算,考查圓錐側(cè)面展開圖中兩點(diǎn)間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來求是解決本題的突破點(diǎn).3、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計(jì)算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進(jìn)行計(jì)算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點(diǎn)】本題考查了扇形面積的計(jì)算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.4、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計(jì)算⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計(jì)算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設(shè)這個(gè)正多邊形為n邊形,∵AD,AF分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內(nèi)接一個(gè)正十二邊形的一邊.故答案為:12.【考點(diǎn)】本題考查了正多邊形與圓:把一個(gè)圓分成n(n是大于2的自然數(shù))等份,依次連接各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓叫做這個(gè)正多邊形的外接圓;熟練掌握正多邊形的有關(guān)概念.5、【解析】【分析】將圓錐的側(cè)面展開,設(shè)頂點(diǎn)為B',連接BB',AE.線段AC與BB'的交點(diǎn)為F,線段BF是最短路程.【詳解】如圖將圓錐側(cè)面展開,得到扇形ABB′,則線段BF為所求的最短路程.設(shè)∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E為弧BB′中點(diǎn),∴∠AFB=90°,∠BAF=60°,∴BF=AB?sin∠BAF=6×=,∴最短路線長為.故答案為:.【考點(diǎn)】本題考查了平面展開?最短路徑問題,解題時(shí)注意把立體圖形轉(zhuǎn)化為平面圖形的思維.6、150【解析】【分析】根據(jù)弧長公式計(jì)算.【詳解】根據(jù)扇形的面積公式可得:,解得r=24cm,再根據(jù)弧長公式,解得.故答案為:150.【考點(diǎn)】本題考查了弧長的計(jì)算及扇形面積的計(jì)算,要記熟公式:扇形的面積公式,弧長公式.7、【解析】【分析】根據(jù)直線AB和圓相交,則圓心到直線的距離小于圓的半徑即可得問題答案.【詳解】∵⊙O的半徑為5,直線AB與⊙O相交,∴圓心到直線AB的距離小于圓的半徑,即0≤d<5;故答案為:0≤d<5.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系;熟記直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系是解決問題的關(guān)鍵.同時(shí)注意圓心到直線的距離應(yīng)是非負(fù)數(shù).8、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因?yàn)椤鰿DE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時(shí),即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.9、140°【解析】【分析】在等腰中,根據(jù)三角形的外角性質(zhì)可求出外角的度數(shù);而是同弧所對(duì)的圓周角和圓心角,可根據(jù)圓周角和圓心角的關(guān)系求出的度數(shù).【詳解】△ABD中,AB=AD,則:
∴∴故答案為【考點(diǎn)】考查圓周角定理,在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于圓心角的一半.10、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點(diǎn)】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握?qǐng)A周角的性質(zhì).三、解答題1、【解析】【分析】連接OB、OC,由圓周角定理及圓的性質(zhì)得△OBC是等邊三角形,由OD⊥BC可得CD=BD,由勾股定理可求得OD的長.【詳解】連接OB、OC,如圖則OB=OC=6∵圓周角∠A與圓心角∠BOC對(duì)著同一段弧∴∠BOC=2∠A=60゜∴△OBC是等邊三角形∴BC=OB=6∵OD⊥BC∴在Rt△ODC中,由勾股定理得:【考點(diǎn)】本題考查了圓周角定理、等邊三角形的判定與性質(zhì)、勾股定理等知識(shí),連接兩個(gè)半徑運(yùn)用圓周角定理是本題的關(guān)鍵.2、16【解析】【分析】連接OA,根據(jù)垂徑定理可得AB=2AD,再由勾股定理,可得AD=8,即可求解.【詳解】解:如圖,連接OA,∵OC為⊙O的半徑,弦AB⊥OC,∴AB=2AD,∵OC=10,CD=4,∴OA=OC=10,OD=OC-CD=6,在中,由勾股定理得:,∴AB=16.【考點(diǎn)】本題主要考查了垂徑定理,勾股定理,熟練掌握垂直弦的直徑平分這條弦,并且平分線所對(duì)的兩條弧是解題的關(guān)鍵.3、5.【解析】【詳解】試題分析:首先連接OB,OC,OD,由等邊△A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026云南臨滄市統(tǒng)計(jì)局城鎮(zhèn)公益性崗位人員招聘1人考試參考試題及答案解析
- 2026四川能投綜合能源有限責(zé)任公司員工招聘19人考試參考試題及答案解析
- 2026北京興賓通人力資源管理有限公司面向社會(huì)招聘勞務(wù)派遣人員1人備考考試試題及答案解析
- 武漢市硚口區(qū)公立初中招聘初中教師6人筆試模擬試題及答案解析
- 2026山東威海臨港經(jīng)濟(jì)技術(shù)開發(fā)區(qū)鎮(zhèn)屬事業(yè)單位招聘初級(jí)綜合類崗位人員備考題庫含答案詳解
- 2026上半年貴州事業(yè)單位聯(lián)考正安縣招聘65人備考題庫及1套參考答案詳解
- 2026山東發(fā)展智慧園區(qū)投資有限公司派遣制財(cái)務(wù)出納崗招聘1人參考考試題庫及答案解析
- 2026云南玉溪市峨山縣教育體育系統(tǒng)招聘畢業(yè)生6人備考題庫及完整答案詳解1套
- 2025固原市原州區(qū)補(bǔ)充錄用社區(qū)工作者17人備考題庫及參考答案詳解
- 2026年農(nóng)業(yè)科技推廣員農(nóng)業(yè)知識(shí)應(yīng)用考核題目
- 中醫(yī)康復(fù)面試題目及答案
- 《人工智能導(dǎo)論》高職人工智能通識(shí)課程全套教學(xué)課件
- 中華醫(yī)學(xué)會(huì)麻醉學(xué)分會(huì)困難氣道管理指南
- 南京旅館住宿管理辦法
- 【香港職業(yè)訓(xùn)練局(VTC)】人力調(diào)查報(bào)告書2024-珠寶、鐘表及眼鏡業(yè)(繁體版)
- 急性呼吸衰竭的診斷與治療
- 客戶分配管理辦法管理
- 燃?xì)馊霊舭矙z培訓(xùn)
- 高中地理思政融合課《全球氣候變暖》
- 2025年中考語文一輪復(fù)習(xí):民俗類散文閱讀 講義(含練習(xí)題及答案)
- 2023-2024學(xué)年八年級(jí)(上)期末數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論