2024年遼寧省調(diào)兵山市中考數(shù)學考前沖刺練習試題附完整答案詳解【全優(yōu)】_第1頁
2024年遼寧省調(diào)兵山市中考數(shù)學考前沖刺練習試題附完整答案詳解【全優(yōu)】_第2頁
2024年遼寧省調(diào)兵山市中考數(shù)學考前沖刺練習試題附完整答案詳解【全優(yōu)】_第3頁
2024年遼寧省調(diào)兵山市中考數(shù)學考前沖刺練習試題附完整答案詳解【全優(yōu)】_第4頁
2024年遼寧省調(diào)兵山市中考數(shù)學考前沖刺練習試題附完整答案詳解【全優(yōu)】_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省調(diào)兵山市中考數(shù)學考前沖刺練習試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、把7個同樣大小的正方體形狀的積木堆放在桌子上,從正面和左面看到的形狀圖都是如圖所示的同樣的圖形,則其從上面看到的形狀圖不可能是()A. B. C. D.2、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結(jié)果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.873、從下列命題中,隨機抽取一個是真命題的概率是(

)(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)兩條對角線長分別為6和8的菱形的周長是40.A. B. C. D.14、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點C為優(yōu)弧上的一個動點,則面積的最大值是()A. B. C. D.5、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、對于二次函數(shù),下列說法不正確的是(

)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大2、古希臘數(shù)學家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點A,連接AO并延長交⊙O于點B;②以點B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點;③連接CO,DO并延長分別交⊙O于點E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點G B.∠FGA=∠FOAC.點G是線段EF的三等分點 D.EF=AF3、在中,,,且關(guān)于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(

)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是24、如圖是拋物線的一部分,拋物線的頂點坐標是A(1,3),與x軸的一個交點是B(4,0),點P在拋物線上,且在直線AB上方,則下列結(jié)論正確的是(

)A. B.方程有兩個相等的實根C. D.點P到直線AB的最大距離5、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(

)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、現(xiàn)有A、B兩個不透明的袋子,各裝有三個小球,A袋中的三個小球上分別標記數(shù)字1,2,3;B袋中的三個小球上分別標記數(shù)字2,3,4.這六個小球除標記的數(shù)字外,其余完全相同.將A、B兩個袋子中的小球搖勻,然后從A、B袋中各隨機摸出一個小球,則摸出的這兩個小球標記的數(shù)字之和為5的概率為______.2、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.3、已知關(guān)于x的一元二次方程的一個根比另一個根大2,則m的值為_____.4、《九章算術(shù)》是我國古代的數(shù)學名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設(shè)門的寬為尺,根據(jù)題意,那么可列方程___________.5、拋物線y=ax2+bx+c(a≠0)的部分圖象如圖所示,其與x軸的一個交點坐標為(﹣3,0),對稱軸為x=﹣1,則當y<0時,x的取值范圍是_____.四、簡答題(2小題,每小題10分,共計20分)1、(1)計算:.(2)解方程:.2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設(shè)運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?五、解答題(4小題,每小題10分,共計40分)1、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).2、2022年冬奧會即將在北京召開,某網(wǎng)絡(luò)經(jīng)銷商購進了一批以冬奧會為主題的文化衫進行銷售,文化衫的進價為每件30元,當銷售單價定為70元時,每天可售出20件,每銷售一件需繳納網(wǎng)絡(luò)平臺管理費2元,為了擴大銷售,增加盈利,決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn):銷售單價每降低1元,則每天可多售出2件(銷售單價不低于進價),若設(shè)這款文化衫的銷售單價為x(元),每天的銷售量為y(件).(1)求每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)當銷售單價為多少元時,銷售這款文化衫每天所獲得的利潤最大,最大利潤為多少元?3、(1)解方程:(2)我國古代數(shù)學專著《九章算術(shù)》中記載:“今有宛田,下周三十步,徑十六步,問為田幾何?”注釋:宛田是指扇形形狀的田,下周是指弧長,徑是指扇形所在圓的直徑.求這口宛田的面積.4、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.-參考答案-一、單選題1、C【分析】利用俯視圖,寫出符合題意的小正方體的個數(shù),即可判斷.【詳解】A、當7個小正方體如圖分布時,符合題意,本選項不符合題意.B、當7個小正方體如圖分布時,符合題意,本選項不符合題意.C、沒有符合題意的幾何圖形,本選項符合題意.D、當7個小正方體如圖分布時,符合題意,本選項不符合題意.故選:C.【點睛】此題考查了從不同的方向觀察物體和幾何體,鍛煉了學生的空間想象力和抽象思維能力.2、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.3、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)菱形的對角線長為6和8根據(jù)菱形的性質(zhì),對角線互相垂直且平分,利用勾股定理可求得菱形的邊長為5,則菱形的周長為,是假命題則隨機抽取一個是真命題的概率是,故選:C.【考點】本題考查了命題的真假,概率,菱形的性質(zhì),無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關(guān)鍵是運用所學知識判斷各個命題的真假.4、C【分析】如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結(jié)論.【詳解】解:如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識,解題的關(guān)鍵是求出CT的最大值,屬于中考??碱}型.5、B【分析】根據(jù)隨機擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.二、多選題1、ACD【解析】【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.2、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點G是線段EF的三等分點,故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯誤,故答案為:ABC.【考點】本題考查作圖-復雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識,解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.3、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應(yīng)用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).4、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、坐標系內(nèi)直線的平移、利用配方法求二次三項式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項錯誤;由圖象可知,直線與拋物線只有一個交點,則方程有兩個相等的實根,故B選項正確;當時,拋物線由最大值,則,即,故C選項正確;設(shè)直線AB的表達式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個交點時至,要求點P到直線AB的最大距離,即點P為直線與拋物線的交點,過點作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設(shè)直線的表達式為,當與拋物線有一個交點時,即,整理得,由于只有一個交點,則,解得,即直線AB向上平移了:,則,則,點P到直線AB的最大距離,故D選項正確,故選BCD.【考點】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、平面直角坐標系內(nèi)直線的平移,解題的關(guān)鍵學會利用函數(shù)圖象解決問題,靈活運用相關(guān)知識解決問題,本題難點在于要求拋物線上的點到直線的最大距離即求直線平移至與拋物線有一個交點時交點到直線的距離.5、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進而對所得結(jié)論進行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運用對稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.三、填空題1、【分析】先列表,再利用表格信息得到所有的等可能的結(jié)果數(shù)與符合條件的結(jié)果數(shù),再利用概率公式進行計算即可.【詳解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的結(jié)果數(shù)有9種,而和為5的結(jié)果數(shù)有3種,摸出的這兩個小球標記的數(shù)字之和為5的概率為:故答案為:【點睛】本題考查的是利用列表法或畫樹狀圖的方法求解簡單隨機事件的概率,掌握“列表或畫樹狀圖的方法”是解本題的關(guān)鍵.2、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應(yīng)輔助線,綜合運用這些知識點是解題關(guān)鍵.3、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關(guān)系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關(guān)鍵是熟知因式分解法的運用.4、或【解析】【分析】設(shè)門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:設(shè)門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應(yīng)用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.5、﹣3<x<1【解析】【分析】根據(jù)拋物線與x軸的一個交點坐標和對稱軸,由拋物線的對稱性可求拋物線與x軸的另一個交點,再根據(jù)拋物線的增減性可求當y<0時,x的取值范圍.【詳解】解:∵拋物線y=ax2+bx+c(a≠0)與x軸的一個交點為(﹣3,0),對稱軸為x=﹣1,∴拋物線與x軸的另一個交點為(1,0),由圖象可知,當y<0時,x的取值范圍是﹣3<x<1.故答案為:﹣3<x<1.【考點】本題考查了二次函數(shù)的性質(zhì)和數(shù)形結(jié)合能力,熟練掌握并靈活運用是解題的關(guān)鍵.四、簡答題1、(1)10;(2)無解.【解析】【分析】(1)原式利用絕對值的代數(shù)意義,特殊角三角函數(shù)值,二次根式性質(zhì),負整數(shù)指數(shù)冪法則計算即可求出值;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】解:(1)原式;(2)去分母得:2+1?x=2x?6,解得:x=3,經(jīng)檢驗x=3是增根,分式方程無解.【考點】此題考查了解分式方程以及實數(shù)的運算,熟記特殊角三角函數(shù)值,實數(shù)的運算法則以及分式方程的解法是解本題的關(guān)鍵.2、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長定理.五、解答題1、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關(guān)于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關(guān)于點C中心對稱的點A'(-1,-3),B關(guān)于點C中心對稱的點B'(1,-1),C關(guān)于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.2、(1);(2)當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論