難點解析-人教版9年級數(shù)學(xué)上冊《一元二次方程》定向練習(xí)試卷(解析版含答案)_第1頁
難點解析-人教版9年級數(shù)學(xué)上冊《一元二次方程》定向練習(xí)試卷(解析版含答案)_第2頁
難點解析-人教版9年級數(shù)學(xué)上冊《一元二次方程》定向練習(xí)試卷(解析版含答案)_第3頁
難點解析-人教版9年級數(shù)學(xué)上冊《一元二次方程》定向練習(xí)試卷(解析版含答案)_第4頁
難點解析-人教版9年級數(shù)學(xué)上冊《一元二次方程》定向練習(xí)試卷(解析版含答案)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊《一元二次方程》定向練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、若|x2﹣4x+4|與互為相反數(shù),則x+y的值為()A.3 B.4 C.6 D.92、已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是()A.1一定不是關(guān)于x的方程x2+bx+a=0的根B.0一定不是關(guān)于x的方程x2+bx+a=0的根C.1和﹣1都是關(guān)于x的方程x2+bx+a=0的根D.1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根3、下列一元二次方程中,沒有實數(shù)根的是(

).A. B.C. D.4、如圖,一次函數(shù)y=-3x+4的圖象交x軸于點A,交y軸于點B,點P在線段AB上(不與點A,B重合),過點P分別作OA和OB的垂線,垂足為C,D.若矩形OCPD的面積為1時,則點P的坐標(biāo)為()A.(,3) B.(,2) C.(,2)和(1,1) D.(,3)和(1,1)5、若對于任意實數(shù)a,b,c,d,定義

=ad-bc,按照定義,若=0,則x的值為(

)A. B. C.3 D.6、元旦當(dāng)天,小明將收到的一條微信,發(fā)送給若干人,每個收到微信的人又給相同數(shù)量的人轉(zhuǎn)發(fā)了這條微信,此時收到這條微信的人共有157人,則小明給多少人發(fā)了微信(

)A.10 B.11 C.12 D.137、一元二次方程x2﹣2x=0的兩根分別為x1和x2,則x1x2為()A.﹣2 B.1 C.2 D.08、若一元二次方程的兩根為,,則的值是(

)A.4 B.2 C.1 D.﹣29、在一幅長50cm,寬40cm的矩形風(fēng)景畫的四周鑲一條外框,制成一幅矩形掛圖(如圖所示),如果要使整個掛圖的面積是3000cm2,設(shè)邊框的寬為xcm,那么x滿足的方程是()A.(50﹣2x)(40﹣2x)=3000 B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000 D.(50+x)(40+x)=300010、《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設(shè)門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=1002第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、若m,n是關(guān)于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.2、已知關(guān)于x的方程ax2+bx+1=0的兩根為x1=1,x2=2,則方程a(x+1)2+b(x+1)+1=0的兩根之和為__________.3、準(zhǔn)備在一塊長為30米,寬為24米的長方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路,(如圖所示)四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的4倍,若四條小路所占面積為80平方米,則小路的寬度為_____米.4、為創(chuàng)建“國家生態(tài)園林城市”,某小區(qū)在規(guī)劃設(shè)計時,在小區(qū)中央設(shè)置一塊面積為1200平方米的矩形綠地,并且長比寬多40米.設(shè)綠地寬為x米,根據(jù)題意,可列方程為_____.5、一元二次方程有兩個相等的實數(shù)根,則________.6、已知a,b是一元二次方程x2+x﹣1=0的兩根,則3a2﹣b的值是_____.7、已知關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,則m=_____.8、對于任意實數(shù)a、b,定義一種運算:,若,則x的值為________.9、用換元法解方程﹣=1,設(shè)y=,那么原方程可以化為關(guān)于y的整式方程為_____.10、關(guān)于x的方程x2-kx-2k=0的兩個根的平方和為12,則k=________.三、解答題(5小題,每小題6分,共計30分)1、一商店銷售某種商品,平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售、增加盈利,該店采取了降價措施,在每件盈利不少于25元的前提下,經(jīng)過一段時間銷售,發(fā)現(xiàn)銷售單價每降低1元,平均每天可多售出2件.(1)若降價3元,則平均每天銷售數(shù)量為________件;(2)當(dāng)每件商品降價多少元時,該商店每天銷售利潤為1200元?2、已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.(1)如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;(2)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;(3)如果△ABC是等邊三角形,試求這個一元二次方程的根.3、若m是方程x2+x-1=0的一個根,求代數(shù)式m3+2m2+2019的值.4、如果方程與方程有且只有一個公共根,求a的值.5、解方程:(1);

(2).

(3).-參考答案-一、單選題1、A【解析】【詳解】根據(jù)題意得:|x2–4x+4|+=0,所以|x2–4x+4|=0,=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故選A.2、D【解析】【分析】根據(jù)方程有兩個相等的實數(shù)根可得出b=a+1或b=-(a+1),當(dāng)b=a+1時,-1是方程x2+bx+a=0的根;當(dāng)b=-(a+1)時,1是方程x2+bx+a=0的根.再結(jié)合a+1≠-(a+1),可得出1和-1不都是關(guān)于x的方程x2+bx+a=0的根.【詳解】∵關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,∴,∴b=a+1或b=-(a+1).當(dāng)b=a+1時,有a-b+1=0,此時-1是方程x2+bx+a=0的根;當(dāng)b=-(a+1)時,有a+b+1=0,此時1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關(guān)于x的方程x2+bx+a=0的根.故選D.【考點】本題考查了根的判別式以及一元二次方程的定義,牢記“當(dāng)△=0時,方程有兩個相等的實數(shù)根”是解題的關(guān)鍵.3、D【解析】【分析】分別計算出每個方程的判別式即可判斷.【詳解】A、∵△=4-4×1×0=4>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;B、∵△=16-4×1×(-1)=20>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;C、∵△=25-4×3×2=1>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;D、∵△=16-4×2×3=-8<0,∴方程沒有實數(shù)根,故本選項正確;故選:D.【考點】本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.4、D【解析】【分析】由點P在線段AB上可設(shè)點P的坐標(biāo)為(m,-3m+4)(0<m<),進(jìn)而可得出OC=m,OD=-3m+4,結(jié)合矩形OCPD的面積為1,即可得出關(guān)于m的一元二次方程,解之即可得出m的值,再將其代入點P的坐標(biāo)中即可求出結(jié)論.【詳解】解:∵點P在線段AB上(不與點A,B重合),且直線AB的解析式為y=-3x+4,∴設(shè)點P的坐標(biāo)為(m,-3m+4)(0<m<),∴OC=m,OD=-3m+4.∵矩形OCPD的面積為1,∴m(-3m+4)=1,∴m1=,m2=1,∴點P的坐標(biāo)為(,3)或(1,1).故選:D.【考點】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征以及解一元二次方程,利用一次函數(shù)圖象上點的坐標(biāo)特征及,找出關(guān)于m的一元二次方程是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)新定義可得方程(x+1)(2x-3)=x(x-1),然后再整理可得x2=3,再利用直接開平方法解方程即可.【詳解】解:由題意得:(x+1)(2x-3)=x(x-1),整理得:x2=3,兩邊直接開平方得:x=±,故選:D.【考點】此題主要考查了新定義,一元二次方程的解法--直接開平方法,關(guān)鍵是正確理解題意,列出方程.6、C【解析】【分析】設(shè)小明發(fā)短信給x個人,根據(jù)每人只轉(zhuǎn)發(fā)一次可得第一次轉(zhuǎn)發(fā)共有(x+1)人收到了短信,第二次轉(zhuǎn)發(fā)有(1+x+x2)人收到了短信,由題意可得方程人收到了短信=157,再解方程即可.【詳解】解:設(shè)小明發(fā)短信給x個人,由題意得:∴1+x+x2=157,解得:x1=12,x2=-13(不合題意舍去),答:小明發(fā)短信給12個人,故選:C.【考點】此題主要考查了一元二次方程的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.7、D【解析】【詳解】分析:根據(jù)根與系數(shù)的關(guān)系可得出x1x2=0,此題得解.詳解:∵一元二次方程x2﹣2x=0的兩根分別為x1和x2,∴x1x2=0.故選D.點睛:本題考查了根與系數(shù)的關(guān)系,牢記兩根之積等于是解題的關(guān)鍵.8、A【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系即可求解.【詳解】根據(jù)題意得,,所以.故選A.【考點】此題主要考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟知根與系數(shù)的性質(zhì).9、B【解析】【分析】根據(jù)題意表示出矩形掛畫的長和寬,再根據(jù)長方形的面積公式可得方程.【詳解】解:設(shè)邊框的寬為xcm,所以整個掛畫的長為(50+2x)cm,寬為(40+2x)cm,根據(jù)題意,得:(50+2x)(40+2x)=3000,故選:B.【考點】本題主要考查由實際問題抽象出一元二次方程,在解決實際問題時,要全面、系統(tǒng)地申清問題的已知和未知,以及它們之間的數(shù)量關(guān)系,找出并全面表示問題的相等關(guān)系,設(shè)出未知數(shù),用方程表示出已知量與未知量之間的等量關(guān)系,即列出一元二次方程.10、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設(shè)門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對角線長1丈(100寸),即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設(shè)門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點】本題主要考查了勾股定理的應(yīng)用、由實際問題抽象出一元二次方程,準(zhǔn)確計算是解題的關(guān)鍵.二、填空題1、21【解析】【分析】先根據(jù)根與系數(shù)的關(guān)系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關(guān)于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.2、1【解析】【分析】利用整體的思想以及根與系數(shù)的關(guān)系即可求出答案.【詳解】解:設(shè)x+1=t,方程a(x+1)2+b(x+1)+1=0的兩根分別是x3,x4,∴at2+bt+1=0,由題意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3.故答案為1.【考點】本題考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練運用根與系數(shù)的關(guān)系,本題屬于基礎(chǔ)題型.3、1.25【解析】【分析】設(shè)小路的寬度為,根據(jù)圖形所示,用表示出小路的面積,由小路面積為80平方米,求出未知數(shù).【詳解】設(shè)小路的寬度為,由題意和圖示可知,小路的面積為,解一元二次方程,由,可得.【考點】本題綜合考查一元二次方程的列法和求解,這類實際應(yīng)用的題目,關(guān)鍵是要結(jié)合題意和圖示,列對方程.4、x(x+40)=1200.【解析】【分析】先表示出矩形場地的長,再根據(jù)矩形的面積公式即可列出方程.【詳解】由題意可得,x(x+40)=1200,故答案是:x(x+40)=1200.【考點】考查由實際問題抽象出一元二次方程,解題的關(guān)鍵是明確題意,列出相應(yīng)的方程.5、1【解析】【分析】由一元二次方程有兩個相等的實數(shù)根,則從而列方程可得答案.【詳解】解:方程有兩個相等的實數(shù)根,故答案為:【考點】本題考查的是一元二次方程根的判別式,掌握根的判別式是解題的關(guān)鍵.6、8.【解析】【分析】由根與系數(shù)的關(guān)系及根的定義可知a+b=﹣1,ab=﹣1,a2+a=1,據(jù)此對3a2﹣b進(jìn)行變形計算可得結(jié)果.【詳解】解:由題意可知:a+b=﹣1,ab=﹣1,a2+a=1,∴原式=3(1﹣a)﹣b+=3﹣3a﹣b+=3﹣2a﹣(a+b)+=3﹣2a+1+=4﹣2a+=4+=4+=4+4=8,故答案為:8.【考點】本題考查了一元二次方程的根與系數(shù)的關(guān)系及根的定義,利用性質(zhì)對式子進(jìn)行降次變形是解題關(guān)鍵.7、2【解析】【詳解】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關(guān)于m的方程,通過解關(guān)于m的方程求得m的值即可.【詳解】∵關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的解的定義.解答該題時需注意二次項系數(shù)a≠0這一條件.8、或2【解析】【分析】根據(jù)新定義的運算得到,整理并求解一元二次方程即可.【詳解】解:根據(jù)新定義內(nèi)容可得:,整理可得,解得,,故答案為:或2.【考點】本題考查新定義運算、解一元二次方程,根據(jù)題意理解新定義運算是解題的關(guān)鍵.9、y2+y﹣2=0【解析】【分析】可根據(jù)方程特點設(shè)y=,則原方程可化為﹣y=1,化成整式方程即可.【詳解】解:方程﹣=1,若設(shè)y=,把設(shè)y=代入方程得:﹣y=1,方程兩邊同乘y,整理得y2+y﹣2=0.故答案為:y2+y﹣2=0.【考點】本題主要考查用換元法解分式方程,它能夠把一些分式方程化繁為簡,化難為易,對此應(yīng)注意總結(jié)能用換元法解的分式方程的特點,尋找解題技巧.10、2【解析】【分析】設(shè)關(guān)于x的方程x2-kx-2k=0的兩實數(shù)根分別為x1、x2,根據(jù)根與系數(shù)的關(guān)系可求出x1+x2=k,x1?x2=-2k.再利用完全平方式可知,即可得到方程,解出方程.再利用根的判別式求出k的取值范圍,舍去不合題意的解即可.【詳解】設(shè)關(guān)于x的方程x2-kx-2k=0的兩實數(shù)根分別為x1、x2,則x1+x2=k,x1?x2=-2k.∵原方程兩實數(shù)根的平方和為12,∴,∴,即.解得:,.∵方程有兩實數(shù)根,∴,即,∴或.∴舍去.綜上.故答案為:2.【考點】本題考查一元二次方程根的判別式與根與系數(shù)的關(guān)系,熟記一元二次方程根的判別式和根與系數(shù)的關(guān)系的公式是解答本題的關(guān)鍵.三、解答題1、(1)26;(2)每件商品降價10元時,該商店每天銷售利潤為1200元.【解析】【分析】(1)根據(jù)銷售單價每降低1元,平均每天可多售出2件,可得若降價3元,則平均每天可多售出2×3=6件,即平均每天銷售數(shù)量為20+6=26件;(2)利用商品平均每天售出的件數(shù)×每件盈利=每天銷售這種商品利潤列出方程解答即可.【詳解】(1)若降價3元,則平均每天銷售數(shù)量為20+2×3=26件.(2)設(shè)每件商品應(yīng)降價x元時,該商店每天銷售利潤為1200元.根據(jù)題意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20應(yīng)舍去,∴x=10.答:每件商品應(yīng)降價10元時,該商店每天銷售利潤為1200元.【考點】此題主要考查了一元二次方程的應(yīng)用,利用基本數(shù)量關(guān)系:平均每天售出的件數(shù)×每件盈利=每天銷售的利潤是解題關(guān)鍵.2、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】【詳解】試題分析:(1)直接將x=﹣1代入得出關(guān)于a,b的等式,進(jìn)而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進(jìn)而得出關(guān)于a,b,c的等式,進(jìn)而判斷△ABC的形狀;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論