版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,圓內(nèi)接正六邊形的邊長(zhǎng)為4,以其各邊為直徑作半圓,則圖中陰影部分的面積為(
)A. B. C. D.2、如圖,是⊙的直徑,點(diǎn)C為圓上一點(diǎn),的平分線交于點(diǎn)D,,則⊙的直徑為(
)A. B. C.1 D.23、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過(guò)點(diǎn)C作⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)D.設(shè)∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°4、如圖,AB是⊙O的直徑,C,D是⊙O上位于AB異側(cè)的兩點(diǎn).下列四個(gè)角中,一定與∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD5、如圖,⊙O的半徑為5cm,直線l到點(diǎn)O的距離OM=3cm,點(diǎn)A在l上,AM=3.8cm,則點(diǎn)A與⊙O的位置關(guān)系是(
)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能6、一個(gè)點(diǎn)到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(
)A.16cm或6cm B.3cm或8cm C.3cm D.8cm7、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長(zhǎng)是(
)A. B. C. D.8、如圖,、為的切線,、為切點(diǎn),點(diǎn)為弧上一點(diǎn),過(guò)點(diǎn)作的切線分別交、于、,若,則的周長(zhǎng)等于(
).A. B. C. D.9、如圖,⊙O中,弦AB⊥CD,垂足為E,F(xiàn)為的中點(diǎn),連接AF、BF、AC,AF交CD于M,過(guò)F作FH⊥AC,垂足為G,以下結(jié)論:①;②HC=BF:③MF=FC:④,其中成立的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個(gè)圓錐的底面和側(cè)面,則圓錐的表面積為(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.2、如圖,正方形ABCD的邊長(zhǎng)為2a,E為BC邊的中點(diǎn),的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為.3、如圖,中,長(zhǎng)為,,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至,則邊掃過(guò)區(qū)域(圖中陰影部分)的面積為_(kāi)_______.4、如圖,四邊形ABCD為⊙O的內(nèi)接正四邊形,△AEF為⊙O的內(nèi)接正三角形,連接DF.若DF恰好是同圓的一個(gè)內(nèi)接正多邊形的一邊,則這個(gè)正多邊形的邊數(shù)為_(kāi)____.5、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P是以C(﹣1,0)為圓心,1為半徑的圓上一點(diǎn),連接PA,PB,則△PAB面積的最大值為_(kāi)____.6、數(shù)學(xué)課上,老師讓學(xué)生用尺規(guī)作圖畫(huà)Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認(rèn)為小明這種作法中判斷∠ACB是直角的依據(jù)是_____.7、如圖,將三角形AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_(kāi)____.(結(jié)果保留π)8、已知在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn).小明經(jīng)探究發(fā)現(xiàn):當(dāng)?shù)闹荡_定時(shí),拋物線的對(duì)稱軸上能使為直角三角形的點(diǎn)的個(gè)數(shù)也隨之確定.若拋物線的對(duì)稱軸上存在3個(gè)不同的點(diǎn),使為直角三角形,則的值是____.9、如圖,拋物線的圖象與坐標(biāo)軸交于點(diǎn)、、,頂點(diǎn)為,以為直徑畫(huà)半圓交軸的正半軸于點(diǎn),圓心為,是半圓上的一動(dòng)點(diǎn),連接,是的中點(diǎn),當(dāng)沿半圓從點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)是__________.10、如圖所示,AB、AC為⊙O的兩條弦,延長(zhǎng)CA到點(diǎn)D,AD=AB,若∠ADB=35°,則∠BOC=________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知∠MAN,按下列要求補(bǔ)全圖形.(要求利用沒(méi)有刻度的直尺和圓規(guī)作圖,不寫(xiě)作法,保留作圖痕跡)①在射線AN上取點(diǎn)O,以點(diǎn)O為圓心,以O(shè)A為半徑作⊙O分別交AM、AN于點(diǎn)C、B;②在∠MAN的內(nèi)部作射線AD交⊙O于點(diǎn)D,使射線AD上的各點(diǎn)到∠MAN的兩邊距離相等,請(qǐng)根據(jù)所作圖形解答下列問(wèn)題;(1)連接OD,則OD與AM的位置關(guān)系是,理論依據(jù)是;(2)若點(diǎn)E在射線AM上,且DE⊥AM于點(diǎn)E,請(qǐng)判斷直線DE與⊙O的位置關(guān)系;(3)已知⊙O的直徑AB=6cm,當(dāng)弧BD的長(zhǎng)度為cm時(shí),四邊形OACD為菱形.2、已知P為⊙O上一點(diǎn),過(guò)點(diǎn)P作不過(guò)圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點(diǎn)A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑。(2)如圖2,連接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。3、如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.(1)用配方法將拋物線的解析式化為頂點(diǎn)式:(),并指出頂點(diǎn)M的坐標(biāo);(2)在拋物線的對(duì)稱軸上找點(diǎn)R,使得CR+AR的值最小,并求出其最小值和點(diǎn)R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點(diǎn)P(點(diǎn)P在對(duì)稱軸的左側(cè)),求證:直線MP是⊙N的切線.4、如圖,,分別切、于點(diǎn)、.切于點(diǎn),交于點(diǎn)與不重合).(1)用直尺和圓規(guī)作出;(保留作圖痕跡,不寫(xiě)作法)(2)若半徑為1,,求的長(zhǎng).5、如圖,AB為⊙O的直徑,C、D為⊙O上的兩個(gè)點(diǎn),==,連接AD,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.(1)求證:DE是⊙O的切線.(2)若直徑AB=6,求AD的長(zhǎng).-參考答案-一、單選題1、A【解析】【分析】正六邊形的面積加上六個(gè)小半圓的面積,再減去中間大圓的面積即可得到結(jié)果.【詳解】解:正六邊形的面積為:,六個(gè)小半圓的面積為:,中間大圓的面積為:,所以陰影部分的面積為:,故選:A.【考點(diǎn)】本題考查了正多邊形與圓,圓的面積的計(jì)算,正六邊形的面積的計(jì)算,正確的識(shí)別圖形是解題的關(guān)鍵.2、B【解析】【分析】過(guò)D作DE⊥AB垂足為E,先利用圓周角的性質(zhì)和角平分線的性質(zhì)得到DE=DC=1,再說(shuō)明Rt△DEB≌Rt△DCB得到BE=BC,然后再利用勾股定理求得AE,設(shè)BE=BC=x,AB=AE+BE=x+,最后根據(jù)勾股定理列式求出x,進(jìn)而求得AB.【詳解】解:如圖:過(guò)D作DE⊥AB,垂足為E∵AB是直徑∴∠ACB=90°∵∠ABC的角平分線BD∴DE=DC=1在Rt△DEB和Rt△DCB中DE=DC、BD=BD∴Rt△DEB≌Rt△DCB(HL)∴BE=BC在Rt△ADE中,AD=AC-DC=3-1=2AE=設(shè)BE=BC=x,AB=AE+BE=x+在Rt△ABC中,AB2=AC2+BC2則(x+)2=32+x2,解得x=∴AB=+=2故填:2.【考點(diǎn)】本題主要考查了圓周角定理、角平分線的性質(zhì)以及勾股定理等知識(shí)點(diǎn),靈活應(yīng)用相關(guān)知識(shí)成為解答本題的關(guān)鍵.3、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點(diǎn)】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握?qǐng)A的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).4、D【解析】【分析】由圓周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【詳解】解:連接BC,如圖所示:∵AB是⊙O的直徑,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故選:D.【考點(diǎn)】此題考查了圓周角定理:同弧所對(duì)的圓周角相等,直徑所對(duì)的圓周角是直角,正確掌握?qǐng)A周角定理是解題的關(guān)鍵.5、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.6、B【解析】【分析】最大距離與最小距離的和是直徑;當(dāng)點(diǎn)P在圓外時(shí),點(diǎn)到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當(dāng)點(diǎn)P在圓內(nèi)時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是16cm,因而半徑是8cm;當(dāng)點(diǎn)P在圓外時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.7、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識(shí)點(diǎn),能求出CE=DE是解此題的關(guān)鍵.8、B【解析】【分析】由切線長(zhǎng)定理可得,然后根據(jù)線段之間的轉(zhuǎn)化即可求得的周長(zhǎng).【詳解】∵、為的切線,所以,又∵為的切線,∴,∴的周長(zhǎng).故選:B.【考點(diǎn)】此題考查了圓中切線長(zhǎng)定理的運(yùn)用,解題的關(guān)鍵是熟練掌握切線長(zhǎng)定理.9、C【解析】【分析】根據(jù)弧,弦,圓心角之間的關(guān)系,圓周角定理以及三角形內(nèi)角和定理一一判斷即可.【詳解】解:∵F為的中點(diǎn),∴,故①正確,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③錯(cuò)誤,∵AB⊥CD,F(xiàn)H⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴,∴HC=BF,故②正確,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴=180°,∴=180°,∴,故④正確,故選:C.【點(diǎn)評(píng)】本題考查圓心角,弧,弦之間的關(guān)系,三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考選擇題中的壓軸題.10、B【解析】【分析】設(shè)圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng)得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設(shè)圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點(diǎn)】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算.解題思路:解決此類問(wèn)題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:(1)圓錐的母線長(zhǎng)等于側(cè)面展開(kāi)圖的扇形半徑;(2)圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng).正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.二、填空題1、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點(diǎn)】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握?qǐng)A周角的性質(zhì).2、a.【解析】【分析】作DE的中垂線交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,設(shè)GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點(diǎn)】本題主要考查了正方形的性質(zhì)以及相交兩圓的性質(zhì),相交兩圓的連心線(經(jīng)過(guò)兩個(gè)圓心的直線),垂直平分兩圓的公共弦.注意:在習(xí)題中常常通過(guò)公共弦在兩圓之間建立聯(lián)系.3、【解析】根據(jù)已知的條件和旋轉(zhuǎn)的性質(zhì)得出兩個(gè)扇形的圓心角的度數(shù),再根據(jù)扇形的面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:∵∠BAC=60°,∠BCA=90°,△B'AC'是△BAC繞A旋轉(zhuǎn)120°得到,∴∠B'AB=120°,∠B'AC=60°,∠B'AC'=60°,△B'AC'≌△BAC,∴∠C'B'A=30°,∠C'AC=120°∵AB=1cm,∴AC'=0.5cm,∴S扇形B'AB=,S扇形C'AC=,∴S陰影部分===,故答案為【考點(diǎn)】本題考查圓的綜合應(yīng)用,熟練掌握旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)及扇形面積的求法是解題關(guān)鍵.4、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計(jì)算⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計(jì)算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設(shè)這個(gè)正多邊形為n邊形,∵AD,AF分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內(nèi)接一個(gè)正十二邊形的一邊.故答案為:12.【考點(diǎn)】本題考查了正多邊形與圓:把一個(gè)圓分成n(n是大于2的自然數(shù))等份,依次連接各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓叫做這個(gè)正多邊形的外接圓;熟練掌握正多邊形的有關(guān)概念.5、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標(biāo),根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點(diǎn)C到AB的距離CH,即可求出圓C上點(diǎn)到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),∴當(dāng)y=0時(shí),可得0=﹣x+6,解得:x=8,∴A(8,0),當(dāng)x=0時(shí),得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點(diǎn)】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識(shí),解此題的關(guān)鍵是求出圓上的點(diǎn)到直線AB的最大距離.6、直徑所對(duì)的圓周角是直角【解析】【分析】根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:根據(jù)“直徑所對(duì)的圓周角是直角”得出.故答案為直徑所對(duì)的圓周角是直角.【考點(diǎn)】本題考查的是圓周角定理,熟知直徑所對(duì)的圓周角是直角是解答此題的關(guān)鍵.7、5π【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計(jì)算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為5π.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關(guān)鍵.8、2或【解析】【分析】分,和確定點(diǎn)M的運(yùn)動(dòng)范圍,結(jié)合拋物線的對(duì)稱軸與,,共有三個(gè)不同的交點(diǎn),確定對(duì)稱軸的位置即可得出結(jié)論.【詳解】解:由題意得:O(0,0),A(3,4)∵為直角三角形,則有:①當(dāng)時(shí),∴點(diǎn)M在與OA垂直的直線上運(yùn)動(dòng)(不含點(diǎn)O);如圖,②當(dāng)時(shí),,∴點(diǎn)M在與OA垂直的直線上運(yùn)動(dòng)(不含點(diǎn)A);③當(dāng)時(shí),,∴點(diǎn)M在與OA為直徑的圓上運(yùn)動(dòng),圓心為點(diǎn)P,∴點(diǎn)P為OA的中點(diǎn),∴∴半徑r=∵拋物線的對(duì)稱軸與x軸垂直由題意得,拋物線的對(duì)稱軸與,,共有三個(gè)不同的交點(diǎn),∴拋物線的對(duì)稱軸為的兩條切線,而點(diǎn)P到切線,的距離,又∴直線的解析式為:;直線的解析式為:;∴或4∴或-8故答案為:2或-8【考點(diǎn)】本題是二次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn)有圓的切線的判定,直角三角形的判定,綜合性較強(qiáng),有一定難度.運(yùn)用數(shù)形結(jié)合、分類討論是解題的關(guān)鍵.9、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,計(jì)算即可.【詳解】解:,∴點(diǎn)E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,如圖,∴點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)是.【考點(diǎn)】本題屬于二次函數(shù)和圓的綜合問(wèn)題,考查了運(yùn)動(dòng)路徑的問(wèn)題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.10、140°【解析】【分析】在等腰中,根據(jù)三角形的外角性質(zhì)可求出外角的度數(shù);而是同弧所對(duì)的圓周角和圓心角,可根據(jù)圓周角和圓心角的關(guān)系求出的度數(shù).【詳解】△ABD中,AB=AD,則:
∴∴故答案為【考點(diǎn)】考查圓周角定理,在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于圓心角的一半.三、解答題1、(1)平行;內(nèi)錯(cuò)角相等,兩直線平行;(2)相切,理由見(jiàn)解析;(3)π【解析】【分析】(1)根據(jù)角平分線的定義、圓的性質(zhì)可得,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可得證;(2)利用切線的定義即可判定;(3)根據(jù)菱形的性質(zhì)、圓的半徑相等可得是等邊三角形,利用等邊三角形的性質(zhì)可得,可得,利用弧長(zhǎng)公式即可求解.【詳解】解:補(bǔ)全圖形如下:;(1),∵根據(jù)作圖可知AD平分∠MAN,∴,∵,∴,∴,∴(內(nèi)錯(cuò)角相等,兩直線平行);(2)相切,理由如下:∵DE⊥AM,,∴,∴直線DE與⊙O相切;(3)∵四邊形OACD為菱形,∴,∴,∴是等邊三角形,∴,∴,∴.【考點(diǎn)】本題考查尺規(guī)作圖、切線的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、弧長(zhǎng)公式等內(nèi)容,掌握上述基本性質(zhì)定理是解題的關(guān)鍵.2、(1);(2)α+2β=90°,見(jiàn)解析【解析】【分析】(1)連接AB,由已知得到∠APB=∠APQ+BPQ=90°,根據(jù)圓周角定理證得AB是⊙O的直徑,然后根據(jù)勾股定理求得直徑,即可求得半徑;(2)連接OA、OB、OQ,由證得∠APQ=∠BPQ,即可證得OQ⊥ON,然后根據(jù)三角形內(nèi)角和定理證得2∠OPN+∠PON+∠NOQ=180°,,即可證得α+2β=90°.【詳解】(1)連接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直徑,∴AB=,∴⊙O的半徑為;(2)α+2β=90°,證明:連接OA、OB、OQ,∵∠APQ=∠BPQ,∴,∴∠AOQ=∠BOQ,∵OA=OB,∴OQ⊥AB,∵ON∥AB,∴NO⊥OQ,∴∠NOQ=90°,∵OP=OQ,∴∠OPN=∠OQP,∵∠OPN+∠OQP+∠PON+∠NOQ=180°,∴2∠OPN+∠PON+∠NOQ=180°,∴∠NOP+2∠OPN=90°,∵∠NOP=α,∠OPN=β,∴α+2β=90°.【解答】解:【點(diǎn)評(píng)】本題考查了圓周角定理,垂徑定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.3、(1),M(,);(2),(,);(3)證明見(jiàn)試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo);(2)連接BC,則BC與對(duì)稱軸的交點(diǎn)為R,此時(shí)CR+AR的值最小;先求出點(diǎn)A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點(diǎn)R的坐標(biāo);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點(diǎn)P坐標(biāo),再計(jì)算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點(diǎn)式為:,頂點(diǎn)M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時(shí),,解得x=1或6,∴A(1,0),B(6,0),∵x=0時(shí),y=﹣3,∴C(0,﹣3).連接BC,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年都市農(nóng)業(yè)綜合體運(yùn)營(yíng)可行性研究報(bào)告
- 四川省2024年上半年四川蓬溪縣事業(yè)單位公開(kāi)考試招聘工作人員(60人)筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- 新華保險(xiǎn)部門(mén)經(jīng)理崗位知識(shí)考試題集含答案
- 人事專員崗位說(shuō)明與績(jī)效考核指引
- 財(cái)務(wù)分析考試題庫(kù)及答案解析
- 2025年新能源汽車回收利用體系可行性研究報(bào)告
- 2025年家庭醫(yī)療服務(wù)平臺(tái)建設(shè)項(xiàng)目可行性研究報(bào)告
- 2025年清潔能源管理平臺(tái)項(xiàng)目可行性研究報(bào)告
- 2025年內(nèi)容創(chuàng)作者收入分配平臺(tái)可行性研究報(bào)告
- 2025年古城保護(hù)與文化傳承項(xiàng)目可行性研究報(bào)告
- 工業(yè)區(qū)位因素及其變化高一地理人教版(2019)必修二
- 2022年5月CATTI英語(yǔ)三級(jí)口譯實(shí)務(wù)真題(最全回憶版)
- 畫(huà)法幾何知到章節(jié)答案智慧樹(shù)2023年浙江大學(xué)
- 少年宮剪紙社團(tuán)活動(dòng)記錄
- 生命科學(xué)前沿技術(shù)智慧樹(shù)知到答案章節(jié)測(cè)試2023年蘇州大學(xué)
- GB/T 19867.1-2005電弧焊焊接工藝規(guī)程
- 外科護(hù)理學(xué)期末試卷3套18p
- 人員出車次數(shù)統(tǒng)計(jì)表
- 飛行區(qū)培訓(xùn)題庫(kù)
- 新蘇教版2022-2023六年級(jí)科學(xué)上冊(cè)《專項(xiàng)學(xué)習(xí):像工程師那樣》課件
- 幕墻裝飾施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論