綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】難點(diǎn)解析試題(解析版)_第1頁
綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】難點(diǎn)解析試題(解析版)_第2頁
綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】難點(diǎn)解析試題(解析版)_第3頁
綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】難點(diǎn)解析試題(解析版)_第4頁
綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】難點(diǎn)解析試題(解析版)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】難點(diǎn)解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,已知正方形的邊長為4,以點(diǎn)C為圓心,2為半徑作圓,P是上的任意一點(diǎn),將點(diǎn)P繞點(diǎn)D按逆時針方向旋轉(zhuǎn),得到點(diǎn)Q,連接,則的最大值是(

)A.6 B. C. D.2、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點(diǎn),連接,將線段繞點(diǎn)B逆時針旋轉(zhuǎn)得到,連接.則在點(diǎn)M運(yùn)動過程中,線段長度的最小值是(

)A. B.1 C.2 D.3、如圖所示,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A按順時針方向旋轉(zhuǎn)90°后得到△AFB,連接EF,有下列結(jié)論:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正確的有()A.①②③④ B.②③ C.②③④ D.③④4、在下列面點(diǎn)烘焙模具中,其圖案是中心對稱圖形的是(

)A. B.C. D.5、如圖,將直角三角板繞頂點(diǎn)A順時針旋轉(zhuǎn)到,點(diǎn)恰好落在的延長線上,,則為(

)A. B. C. D.6、下列幾何圖形中,是軸對稱圖形但不是中心對稱圖形的是(

)A.梯形 B.等邊三角形 C.平行四邊形 D.矩形7、如圖,已知正方形的邊長為3,點(diǎn)E是邊上一動點(diǎn),連接,將繞點(diǎn)E順時針旋轉(zhuǎn)到,連接,則當(dāng)之和取最小值時,的周長為(

)A. B. C. D.8、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.9、下列圖形中,是中心對稱圖形的是()A. B.C. D.10、如圖,正三角形ABC的邊長為3,將△ABC繞它的外心O逆時針旋轉(zhuǎn)60°得到△A'B'C',則它們重疊部分的面積是()A.2 B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、將圖1剪成若干小塊,再圖2中進(jìn)行拼接平移后能夠得到①、②、③中的__________.2、如圖,將線段AB繞點(diǎn)O順時針旋轉(zhuǎn)90°得到線段,那么的對應(yīng)點(diǎn)的坐標(biāo)是__________.3、如圖,△ABC中,AB=6,DE∥AC,將△BDE繞點(diǎn)B順時針旋轉(zhuǎn)得到△BD′E′,點(diǎn)D的對應(yīng)點(diǎn)D′落在邊BC上.已知BE′=5,D′C=4,則BC的長為______.4、如圖,在正方形網(wǎng)格中,格點(diǎn)繞某點(diǎn)順時針旋轉(zhuǎn)角得到格點(diǎn),點(diǎn)與點(diǎn),點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對應(yīng)點(diǎn),則_____度.5、如圖,在正方形中,頂點(diǎn)A,,,在坐標(biāo)軸上,且,以為邊構(gòu)造菱形(點(diǎn)在軸正半軸上),將菱形與正方形組成的圖形繞點(diǎn)逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)45°,則第2022次旋轉(zhuǎn)結(jié)束時,點(diǎn)的坐標(biāo)為______.6、如圖,在Rt△ABC中,∠ACB=90°,,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在AC上,且CP=1,將CP繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn),點(diǎn)P的對應(yīng)點(diǎn)為點(diǎn)Q,連接AQ,DQ.當(dāng)∠ADQ=90°時,AQ的長為______.7、如圖,菱形ABCD的邊長為2,∠A=60°,E是邊AB的中點(diǎn),F(xiàn)是邊AD上的一個動點(diǎn),將線段EF繞著點(diǎn)E順時針旋轉(zhuǎn)60°得到EG,連接DG、CG,則DG+CG的最小值為_____.8、如圖,在四邊形ABCD中,,將繞點(diǎn)C順時針旋轉(zhuǎn)60°后,點(diǎn)D的對應(yīng)點(diǎn)恰好與點(diǎn)A重合,得到,,,則BD=______.9、下列4種圖案中,是中心對稱圖形的有_____個.10、如圖,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC為一邊作正方形BDEC設(shè)正方形的對稱中心為O,連接AO,則AO=_____.三、解答題(6小題,每小題5分,共計30分)1、如圖,點(diǎn)在射線上,.如果繞點(diǎn)按逆時針方向旋轉(zhuǎn)到,那么點(diǎn)的位置可以用表示.(1)按上述表示方法,若,,則點(diǎn)的位置可以表示為______;(2)在(1)的條件下,已知點(diǎn)的位置用表示,連接、.求證:.2、如圖,四邊形OABC是矩形,點(diǎn)A、C在坐標(biāo)軸上,△ODE是△OCB繞點(diǎn)O順時針旋轉(zhuǎn)90度得到的,點(diǎn)D在x軸上,直線BD交y軸于點(diǎn)F,交OE于點(diǎn)H,線段BC、OC的長是方程的的解,且OC>BC.(1)求直線BD的解析式;(2)求△OFH的面積;3、在菱形中,,點(diǎn)在的延長線上,點(diǎn)是直線上的動點(diǎn),連接,將線段繞點(diǎn)逆時針得到線段,連接,.(1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時,請直接寫出線段與的數(shù)量關(guān)系;(2)如圖2,當(dāng)點(diǎn)在上時,線段,,之間有怎樣的數(shù)量關(guān)系?請寫出結(jié)論并給出證明;(3)當(dāng)點(diǎn)在直線上時,若,,,請直接寫出線段的長.4、如圖1,二次函數(shù)y=a(x+3)(x﹣4)的圖象交坐標(biāo)軸于點(diǎn)A,B(0,﹣2),點(diǎn)P為x軸上一動點(diǎn).(1)求該二次函數(shù)的解析式;(2)過點(diǎn)P作PQ⊥x軸,分別交線段AB、拋物線于點(diǎn)Q,C,連接AC.若OP=1,求△ACQ的面積;(3)如圖2,連接PB,將線段PB繞點(diǎn)P逆時針旋轉(zhuǎn)90°得到線段PD.當(dāng)點(diǎn)D在拋物線上時,求點(diǎn)D的坐標(biāo).5、如圖,方格中,每個小正方形的邊長都是單位1,△ABC的位置如圖.(1)畫出將△ABC向右平移2個單位得到的△A1B1C1;(2)畫出將△ABC繞點(diǎn)O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2;(3)寫出C2點(diǎn)的坐標(biāo).6、已知和都是等腰直角三角形,.(1)如圖1,連接,,求證:;(2)將繞點(diǎn)O順時針旋轉(zhuǎn).①如圖2,當(dāng)點(diǎn)M恰好在邊上時,求證:;②當(dāng)點(diǎn)A,M,N在同一條直線上時,若,,請直接寫出線段的長.-參考答案-一、單選題1、A【解析】【分析】連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.根據(jù)正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),角的和差關(guān)系,全等三角形的判定定理和性質(zhì)求出AQ的長度,根據(jù)三角形三邊關(guān)系確定當(dāng)點(diǎn)Q與點(diǎn)E重合時,BQ取得最大值,最后根據(jù)線段的和差關(guān)系計算即可.【詳解】解:如下圖所示,連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.∵正方形ABCD的邊長為4,的半徑為2,∴AD=CD=AB=4,∠ADC=90°,CP=2.∵點(diǎn)P繞點(diǎn)D按逆時針方向旋轉(zhuǎn)90°得到點(diǎn)Q,∴∠QDP=90°,QD=PD.∴∠ADC=∠QDP.∴∠ADC-∠QDC=∠QDP-∠QDC,即∠ADQ=∠CDP.∴.∴AQ=CP=2.∴AE=AQ=2.∵P是上任意一點(diǎn),∴點(diǎn)Q在上移動.∴.∴當(dāng)點(diǎn)Q與點(diǎn)E重合時,BQ取得最大值為BE.∴BE=AE+AB=6.故選:A.【考點(diǎn)】本題考查正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),角的和差關(guān)系,全等三角形的判定定理和性質(zhì),三角形三邊關(guān)系,線段的和差關(guān)系,綜合應(yīng)用這些知識點(diǎn)是解題關(guān)鍵.2、A【解析】【分析】取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點(diǎn)G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點(diǎn).3、C【解析】【分析】利用旋轉(zhuǎn)性質(zhì)可得△ABF≌△ACD,根據(jù)全等三角形的性質(zhì)一一判斷即可.【詳解】解:∵△ADC繞A順時針旋轉(zhuǎn)90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正確,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正確無法判斷BE=CD,故①錯誤,故選:C.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.4、D【解析】【分析】根據(jù)中心對稱圖形的性質(zhì)得出圖形旋轉(zhuǎn)180°,與原圖形能夠完全重合的圖形是中心對稱圖形,分別判斷得出即可.【詳解】解:A.不是中心對稱圖形,不符合題意;B.不是中心對稱圖形,不符合題意;C.不是中心對稱圖形,不符合題意;D.是中心對稱圖形,符合題意;故選:D.【考點(diǎn)】此題主要考查了中心對稱圖形的性質(zhì),根據(jù)中心對稱圖形的定義判斷圖形是解決問題的關(guān)鍵.5、B【解析】【分析】根據(jù)直角三角形兩銳角互余,求出的度數(shù),由旋轉(zhuǎn)可知,在根據(jù)平角的定義求出的度數(shù)即可.【詳解】∵,∴,∵由旋轉(zhuǎn)可知,∴,故答案選:B.【考點(diǎn)】本題考查直角三角形的性質(zhì)以及圖形的旋轉(zhuǎn)的性質(zhì),找出旋轉(zhuǎn)前后的對應(yīng)角是解答本題的關(guān)鍵.6、B【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義以及性質(zhì)對各項(xiàng)進(jìn)行分析即可.【詳解】A、梯形不是軸對稱圖形,也不是中心對稱圖形,故本選項(xiàng)說法錯誤;B、等邊三角形是軸對稱圖形,但不是中心對稱圖形,故本選項(xiàng)說法正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項(xiàng)說法錯誤;D、矩形是軸對稱圖形,也是中心對稱圖形,故本選項(xiàng)說法錯誤.故選:B.【考點(diǎn)】本題考查了軸對稱圖形和中心對稱圖形的判斷,掌握軸對稱圖形和中心對稱圖形的定義以及性質(zhì)是解題的關(guān)鍵.7、A【解析】【分析】連接BF,過點(diǎn)F作FG⊥AB交AB延長線于點(diǎn)G,通過證明△AED≌△GFE(AAS),確定F點(diǎn)在BF的射線上運(yùn)動;作點(diǎn)C關(guān)于BF的對稱點(diǎn)C',由三角形全等得到∠CBF=45°,從而確定C'點(diǎn)在AB的延長線上;當(dāng)D、F、C'三點(diǎn)共線時,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,求出DC'=3即可.【詳解】解:連接BF,過點(diǎn)F作FG⊥AB交AB延長線于點(diǎn)G,∵將ED繞點(diǎn)E順時針旋轉(zhuǎn)90°到EF,∴EF⊥DE,且EF=DE,∴△AED≌△GFE(AAS),∴FG=AE,∴F點(diǎn)在BF的射線上運(yùn)動,作點(diǎn)C關(guān)于BF的對稱點(diǎn)C',∵EG=DA,F(xiàn)G=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC′的角平分線,即F點(diǎn)在∠CBC′的角平分線上運(yùn)動,∴C'點(diǎn)在AB的延長線上,當(dāng)D、F、C'三點(diǎn)共線時,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,∴DC'=3,∴DF+CF的最小值為3,∴此時的周長為.故選:A.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),軸對稱求最短路徑;能夠?qū)⒕€段的和通過軸對稱轉(zhuǎn)化為共線線段是解題的關(guān)鍵.8、B【解析】【分析】利用軸對稱圖形和中心對稱圖形的定義逐項(xiàng)判斷即可.【詳解】A.是軸對稱圖形不是中心對稱圖形.故A不符合題意.B.是軸對稱圖形也是中心對稱圖形.故B符合題意.C.是軸對稱圖形但不是中心對稱圖形.故C不符合題意.D.不是中心對稱圖形也不是軸對稱圖形.故D不符合題意.故選:B【考點(diǎn)】本題考查軸對稱圖形和中心對稱圖形的定義,根據(jù)選項(xiàng)靈活判斷其圖形是否符合題意是解本題的關(guān)鍵.9、C【解析】【分析】根據(jù)中心對稱圖形的概念對各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項(xiàng)不合題意;B、不是中心對稱圖形,故本選項(xiàng)不合題意;C、是中心對稱圖形,故本選項(xiàng)符合題意;D、不是中心對稱圖形,故本選項(xiàng)不合題意.故選:C.【考點(diǎn)】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.10、C【解析】【分析】根據(jù)重合部分是正六邊形,連接O和正六邊形的各個頂點(diǎn),所得的三角形都是全等的等邊三角形,據(jù)此即可求解.【詳解】解:作AM⊥BC于M,如圖:重合部分是正六邊形,連接O和正六邊形的各個頂點(diǎn),所得的三角形都是全等的等邊三角形.∵△ABC是等邊三角形,AM⊥BC,∴AB=BC=3,BM=CM=BC=,∠BAM=30°,∴AM=BM=,∴△ABC的面積=BC×AM=×3×=,∴重疊部分的面積=△ABC的面積=;故選:C.【考點(diǎn)】本題考查了三角形的外心、等邊三角形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì),理解連接O和正六邊形的各個頂點(diǎn),所得的三角形都為全等的等邊三角形是關(guān)鍵.二、填空題1、①②##②①【解析】【詳解】解:根據(jù)圖形1可得剪成若干小塊,再圖2中進(jìn)行拼接平移后能夠得到①、②,不能拼成③,故答案為:①②.2、【解析】【分析】過點(diǎn)A作軸,垂足為C,過點(diǎn)作軸,垂足為,證明,所以,根據(jù)得到,所以,寫出對應(yīng)點(diǎn)的坐標(biāo)即可.【詳解】解:如圖,過點(diǎn)A作軸,垂足為C,過點(diǎn)作軸,垂足為,∵軸,軸,∴,∵將線段AB繞點(diǎn)O順時針旋轉(zhuǎn)90°得到線段,∴,∵,,∴,∴,∴,∵,∴,∴,∴,故答案為:.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì),證明是解答本題的關(guān)鍵.3、.【解析】【詳解】解:由旋轉(zhuǎn)可得,BE=BE'=5,BD=BD',∵D'C=4,∴BD'=BC﹣4,即BD=BC﹣4,∵DE∥AC,∴,即,解得BC=(負(fù)值已舍去),即BC的長為.故答案為.【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì),解一元二次方程以及平行線分線段成比例定理的運(yùn)用,解題時注意:對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.解決問題的關(guān)鍵是依據(jù)平行線分線段成比例定理,列方程求解.4、【解析】【分析】先連接,,作,的垂直平分線交于點(diǎn),連接,,再由題意得到旋轉(zhuǎn)中心,由旋轉(zhuǎn)的性質(zhì)即可得到答案.【詳解】如圖,連接,,作,的垂直平分線交于點(diǎn),連接,,∵,的垂直平分線交于點(diǎn),∴點(diǎn)是旋轉(zhuǎn)中心,∵,∴旋轉(zhuǎn)角.故答案為.【考點(diǎn)】本題考查旋轉(zhuǎn),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì).5、【解析】【分析】根據(jù)直角坐標(biāo)系、正方形的性質(zhì),得,,根據(jù)勾股定理的性質(zhì),得;根據(jù)菱形的性質(zhì),得;根據(jù)圖形規(guī)律和旋轉(zhuǎn)的性質(zhì)分析,即可得到答案.【詳解】∵正方形中,頂點(diǎn)A,,,在坐標(biāo)軸上,且∴,∴以為邊構(gòu)造菱形(點(diǎn)在軸正半軸上),∴∴根據(jù)題意,得菱形與正方形組成的圖形繞點(diǎn)逆時針旋轉(zhuǎn),每8次一個循環(huán)∵除以8,余數(shù)為6∴點(diǎn)的坐標(biāo)和點(diǎn)的坐標(biāo)相同根據(jù)題意,第2次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點(diǎn)的坐標(biāo)為:第4次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點(diǎn)的坐標(biāo)為:第6次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點(diǎn)的坐標(biāo)為:∴點(diǎn)的坐標(biāo)為:故答案為:.【考點(diǎn)】本題考查了圖形規(guī)律、旋轉(zhuǎn)、菱形、正方形、勾股定理、直角坐標(biāo)系的知識;解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)、菱形、正方形的性質(zhì),從而完成求解.6、或##或【解析】【分析】連接,根據(jù)題意可得,當(dāng)∠ADQ=90°時,分點(diǎn)在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當(dāng)∠ADQ=90°時,點(diǎn)在上,且,,如圖,在中,,在中,故答案為:或.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點(diǎn)的位置是解題的關(guān)鍵.7、【解析】【分析】取AD的中點(diǎn)N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.根據(jù)菱形的性質(zhì),可得△ADB是等邊三角形,從而得到△AEN是等邊三角形,可證得△AEF≌△NEG,進(jìn)而得到點(diǎn)G的運(yùn)動軌跡是射線NG,繼而得到GD+GC=GE+GC≥EC,在Rt△BEH和Rt△ECH中,由勾股定理,即可求解.【詳解】如圖,取AD的中點(diǎn)N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.∵四邊形ABCD是菱形∴AD=AB,∵∠A=60°,∴△ADB是等邊三角形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等邊三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GND=180°﹣60°﹣60°=60°,∴點(diǎn)G的運(yùn)動軌跡是射線NG,∴D,E關(guān)于射線NG對稱,∴GD=GE,∴GD+GC=GE+GC≥EC,在Rt△BEH中,∠H=90°,BE=1,∠EBH=60°,∴BH=BE=,EH=,在Rt△ECH中,EC==,∴GD+GC≥,∴GD+GC的最小值為.故答案為:.【考點(diǎn)】本題主要考查了菱形的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,熟練掌握菱形的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識是解題的關(guān)鍵.8、【解析】【分析】連接BE,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCE=60°,CB=CE,BD=AE,再判斷△BCE為等邊三角形得到BE=BC=9,∠CBE=60°,從而有∠ABE=90°,然后利用勾股定理計算出AE即可.【詳解】解:連接BE,如圖,∵△DCB繞點(diǎn)C順時針旋轉(zhuǎn)60°后,點(diǎn)D的對應(yīng)點(diǎn)恰好與點(diǎn)A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE為等邊三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=.故答案為:.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.9、2【解析】【分析】根據(jù)中心對稱圖形的概念即可求解.【詳解】第1個圖形,是中心對稱圖形,符合題意;第2個圖形,不是中心對稱圖形,不符合題意;第3個圖形,是中心對稱圖形,符合題意;第4個圖形,不是中心對稱圖形,不符合題意.故答案為:2.【考點(diǎn)】本題考查了中心對稱圖形,掌握好中心對稱圖形,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、;【解析】【分析】連接AO、BO、CO,過O作FO⊥AO,交AB的延長線于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,F(xiàn)B=AC=6,進(jìn)而得到AF=8+6=14,∠FAO=45°,根據(jù)AO=AF×cos45°進(jìn)行計算即可.【詳解】解:連接AO、BO、CO,過O作FO⊥AO,交AB的延長線于F,∵O是正方形DBCE的對稱中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四邊形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,,∴△AOC≌△FOB(ASA),∴AO=FO,F(xiàn)B=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×=.故答案為.【考點(diǎn)】本題考查了正方形的性質(zhì)和全等三角形的判定與性質(zhì).本題的關(guān)鍵是通過作輔助線來構(gòu)建全等三角形,然后將已知和所求線段轉(zhuǎn)化到直角三角形中進(jìn)行計算.三、解答題1、(1)(3,37°)(2)見解析【解析】【分析】(1)根據(jù)點(diǎn)的位置定義,即可得出答案;(2)畫出圖形,證明△AOA′≌△BOA′(SAS),即可由全等三角形的性質(zhì),得出結(jié)論.(1)解:由題意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案為:(3,37°);(2)證明:如圖,∵,B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB-∠AOA′=74°-37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì),新定義,旋轉(zhuǎn)的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.2、(1)(2)【解析】【分析】(1)解二元一次方程組可得B(-2,4),再由△ODE≌△OCB,可知D(4,0),用待定系數(shù)法求直線BD的解析式即可;(2)求出F(0,),直線OE的解析式為y=x,進(jìn)而求出H的坐標(biāo),即可求△OFH的面積;(1)解:解得∵OC>BC,∴CO=4,BC=2,∴B(-2,4),∵△ODE是△OCB繞點(diǎn)O順時針旋轉(zhuǎn)90度得到,∴△ODE≌△OCB,∴OD=OC,DE=BC,∴D(4,0),E(4,2),設(shè)直線BD的解析式為y=kx+b,將點(diǎn)B與D代入可得,解得,∴BD的解析式為;(2)由,令,得設(shè)直線OE的解析式為y=k1x,將點(diǎn)E代入可得k1=,,,解得,,△OFH的面積.【考點(diǎn)】本題考查一次函數(shù)的綜合,掌握待定系數(shù)法求函數(shù)解析式,旋轉(zhuǎn)的性質(zhì),解二元一次方程組,求一次函數(shù)與坐標(biāo)軸的交點(diǎn)問題,兩直線與坐標(biāo)軸圍成的三角形面積,數(shù)形結(jié)合是解題的關(guān)鍵.3、(1)AM=DF;(2),證明見解析;(3)1或5【解析】【分析】(1)可通過證明,即可利用全等三角形的性質(zhì)得出結(jié)論;(2)通過作輔助線,構(gòu)造等邊三角形DMN,再通過全等證明出DF=EN,利用等邊三角形得出DN=DM,DA=DB,求出AM=BN,即可證明題中三線段之間的關(guān)系;(3)分別討論當(dāng)E點(diǎn)在線段BD和DB的延長線上兩種情況,利用全等以及等邊三角形的相關(guān)結(jié)論即可求出DF的長.【詳解】解:(1)AM=DF;理由:∵菱形ABCD中,∠ABC=120°,可得△BCD和△ABD都是等邊三角形;∴BD=BA,∠DBA=60°,又由旋轉(zhuǎn)可知ME=MF,∠EMF=60°,得△MEF也是等邊三角形,∴EF=EM,∠MEF=60°,∴∠MEA=∠FED,可證:;∴AM=DF.(2)結(jié)論:證明:過點(diǎn)作交延長線于.∵四邊形是菱形∴,∴∵∴∴是等邊三角形∴,∵∴,∴是等邊三角形∴∵,∴是等邊三角形∴,,∴∴∴即:∵,∴∴.(3)1或5當(dāng)E點(diǎn)在線段BD上時,由(2)知,,∵AB=6,∴BD=AD=6,∵BD=2BE,AD=3AM,∴BE=3,AM=2,∴DF=5;當(dāng)E點(diǎn)在線段DB的延長線上時,如圖所示:作MN∥AB與DE交于點(diǎn)N,∵∠MDN=∠DAB=60°,利用平行線的性質(zhì)可得出∠DMN=60°,則△DMN是等邊三角形,∴MN=MD,又由∠DMN=∠EMF,∴∠EMN=∠FMD,∵M(jìn)E=MF,∴,∴DF=EN∵EN=EB-BN=BD-AM=3-AD=3-2=1;綜上可得:DF的長為1或5.【考點(diǎn)】本題涉及到了幾何圖形的動點(diǎn)問題,綜合考查了等邊三角形的判定與性質(zhì)、菱形的性質(zhì)、全等三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論