2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》章節(jié)訓練練習題(解析版)_第1頁
2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》章節(jié)訓練練習題(解析版)_第2頁
2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》章節(jié)訓練練習題(解析版)_第3頁
2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》章節(jié)訓練練習題(解析版)_第4頁
2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》章節(jié)訓練練習題(解析版)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》章節(jié)訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯誤的是()A.當?ABCD是矩形時,∠ABC=90° B.當?ABCD是菱形時,AC⊥BDC.當?ABCD是正方形時,AC=BD D.當?ABCD是菱形時,AB=AC2、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點,AB的長為10,則DC的長為()A.5 B.4 C.3 D.23、平行四邊形中,,則的度數(shù)是()A. B. C. D.4、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.165、在數(shù)學活動課上,老師和同學們判斷一個四邊形門框是否為矩形.下面是某個合作小組的4位同學擬定的方案,其中正確的是()A.測量對角線是否互相平分 B.測量兩組對邊是否分別相等C.測量其內(nèi)角是否均為直角 D.測量對角線是否垂直6、如圖所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,則AE的長為()A.3cm B.2cm C.2cm D.cm7、已知菱形的邊長為6,一個內(nèi)角為60°,則菱形較長的對角線長是()A. B. C.3 D.68、如圖,正方形的面積為256,點F在上,點E在的延長線上,的面積為200,則的長為()A.10 B.11 C.12 D.159、如圖,正方形ABCO和正方形DEFO的頂點A、E、O在同一直線上,且EF=,AB=3,給出下列結(jié)論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個10、如圖,在菱形ABCD中,AB=5,AC=8,過點B作BE⊥CD于點E,則BE的長為()A. B. C.6 D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________2、平面直角坐標系中,四邊形ABCD的頂點坐標分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.3、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.4、正方形的對角線長為cm,則它的周長為__________cm.5、如圖,正方形ABCD的邊長為做正方形,使A,B,C,D是正方形各邊的中點;做正方形,使是正方形各邊的中點……以此類推,則正方形的邊長為__________.6、如圖,在△ABC中,D,E分別是邊AB,AC的中點,∠B=50°.現(xiàn)將△ADE沿DE折疊點A落在三角形所在平面內(nèi)的點為A1,則∠BDA1的度數(shù)為_____.7、如圖,四邊形ABCD是矩形,延長DA到點E,使AE=DA,連接EB,點F1是CD的中點,連接EF1,BF1,得到△EF1B;點F2是CF1的中點,連接EF2,BF2,得到△EF2B;點F3是CF2的中點,連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進行下去,若矩形ABCD的面積等于2,則△EFnB的面積為______.(用含正整數(shù)n的式子表示)8、七巧板被西方人稱為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.9、如圖,在四邊形ABCD中,AD//BC,∠B=90°,DE⊥BC于點E,AB=8cm,AD=24cm,BC=26cm,點P從點A出發(fā),沿邊AD以1cm/s的速度向點D運動,與此同時,點Q從點C出發(fā),沿邊CB以3cm/s的速度向點B運動.當其中一個動點到達端點時,另一個動點也隨之停止運動.連接PQ,過點P作PF⊥BC于點F,則當運動到第__________s時,△DEC≌△PFQ.10、如圖,△ABC中,D、E分別是AB、AC的中點,若DE=4cm,則BC=_____cm.三、解答題(5小題,每小題6分,共計30分)1、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.2、如圖,已知正方形中,點是邊延長線上一點,連接,過點作,垂足為點,與交于點.(1)求證:;(2)若,,求BG的長.3、△ABC和△GEF都是等邊三角形.問題背景:如圖1,點E與點C重合且B、C、G三點共線.此時△BFC可以看作是△AGC經(jīng)過平移、軸對稱或旋轉(zhuǎn)得到.請直接寫出得到△BFC的過程.遷移應(yīng)用:如圖2,點E為AC邊上一點(不與點A,C重合),點F為△ABC中線CD上一點,延長GF交BC于點H,求證:.聯(lián)系拓展:如圖3,AB=12,點D,E分別為AB、AC的中點,M為線段BD上靠近點B的三等分點,點F在射線DC上運動(E、F、G三點按順時針排列).當最小時,則△MDG的面積為_______.4、如圖,ABCD的對角線AC、BD相交于點O,BD12cm,AC6cm,點E在線段BO上從點B以1cm/s的速度向點O運動,點F在線段OD上從點O以2cm/s的速度向點D運動.

(1)若點E、F同時運動,設(shè)運動時間為t秒,當t為何值時,四邊形AECF是平行四邊形.(2)在(1)的條件下,當AB為何值時,AECF是菱形;(3)求(2)中菱形AECF的面積.5、在ABC中,D、E、F分別是AB、AC、BC的中點,連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長線于點G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.-參考答案-一、單選題1、D【解析】【分析】由矩形的四個角是直角可判斷A,由菱形的對角線互相垂直可判斷B,由正方形的對角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當?ABCD是矩形時,∠ABC=90°,正確,故A不符合題意;當?ABCD是菱形時,AC⊥BD,正確,故B不符合題意;當?ABCD是正方形時,AC=BD,正確,故C不符合題意;當?ABCD是菱形時,AB=BC,故D符合題意;故選D【點睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.2、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點,∴CD=AB,∵AB的長為10,∴DC=5,故選:A.【點睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.3、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).4、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.5、C【解析】【分析】根據(jù)矩形的判定:(1)四個角均為直角;(2)對邊互相平行且相等;(3)對角線相等且平分,據(jù)此即可判斷結(jié)果.【詳解】解:A、根據(jù)矩形的對角線相等且平分,故錯誤;B、對邊分別相等只能判定四邊形是平行四邊形,故錯誤;C、矩形的四個角都是直角,故正確;D、矩形的對角線互相相等且平分,所以垂直與否與矩形的判定無關(guān),故錯誤.故選:C.【點睛】本題主要考查的是矩形的判定方法,熟練掌握矩形的判定是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)矩形和直角三角形的性質(zhì)求出∠BAE=30°,再根據(jù)直角三角形的性質(zhì)計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,∴AE=(cm),故選:D.【點睛】本題考查了矩形的性質(zhì),含30度角的直角三角形的性質(zhì),熟記各圖形的性質(zhì)并準確識圖是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)一個內(nèi)角為60°可以判斷較短的對角線與兩鄰邊構(gòu)成等邊三角形,求出較長的對角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長的對角線長BD是:2×3=6.故選:B.【點睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運用菱形的性質(zhì)和等邊三角形的判定求出對角線長.8、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計算CE,根據(jù)正方形ABCD的面積計算BC,根據(jù)勾股定理計算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因為Rt△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點睛】本題考查了正方形,等腰直角三角形面積的計算,考查了直角三角形中勾股定理的運用,本題中求證CF=CE是解題的關(guān)鍵.9、B【解析】【分析】根據(jù)∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據(jù)已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長線于G,根據(jù)勾股定理即可得到BD,根據(jù)三角形面積的關(guān)系計算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯誤;③作DH⊥AB于H,作FG⊥CO交CO的延長線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點睛】本題主要考查了正方形的性質(zhì),勾股定理,準確計算是解題的關(guān)鍵.10、B【解析】【分析】根據(jù)菱形的性質(zhì)求得的長,進而根據(jù)菱形的面積等于,即可求得的長【詳解】解:如圖,設(shè)的交點為,四邊形是菱形,,,在中,,菱形的面積等于故選B【點睛】本題考查了菱形的性質(zhì),掌握菱形的性質(zhì),求得的長是解題的關(guān)鍵.二、填空題1、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進行求解.2、菱形【解析】【分析】先在坐標系中畫出四邊形ABCD,由A、B、C、D的坐標即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點睛】本題主要考查了菱形的判定,坐標與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.3、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.4、16【解析】【分析】根據(jù)正方形對角線的長,可將正方形的邊長求出,進而可將正方形的周長求出.【詳解】解:設(shè)正方形的邊長為x,∵正方形的對角線長為cm,∴,解得:x=4,∴正方形的邊長為:4(cm),∴正方形的周長為4×4=16(cm).故答案為:16.【點睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).5、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長,再根據(jù)勾股定理求出和的長,找出規(guī)律,即可得出正方形的邊長.【詳解】解:∵A,B,C,D是正方形各邊的中點∴,∵正方形ABCD的邊長為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長為故答案為:.【點睛】本題考查了正方形性質(zhì)、勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)計算結(jié)果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.6、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點睛】本題主要考查了翻折變換及其應(yīng)用問題;同時還考查了三角形的中位線定理等幾何知識點.熟練掌握各性質(zhì)是解題的關(guān)鍵.7、.【解析】【分析】由AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,結(jié)合矩形的性質(zhì)可得△EF1D和△EAB的面積都等于1,結(jié)合三角形中線的性質(zhì)可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結(jié)論.【詳解】∵AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點F2是CF1的中點,∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點睛】本題考查了矩形的性質(zhì),三角形中線的性質(zhì),解題的關(guān)鍵是根據(jù)面積找出規(guī)律.8、4【解析】【分析】設(shè)陰影小正方形的邊長為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進而得出大正方形的對角線的長度是4xcm,最后求出邊長a即可.【詳解】解:設(shè)陰影小正方形的邊長為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長為cm,則大正方形的對角線長為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點睛】本題主要考查七巧板的知識,熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.9、6或7【解析】【分析】分兩種情況進行討論,當在點的右側(cè)時,在點的左側(cè)時,根據(jù)△DEC≌△PFQ,可得,求解即可.【詳解】解:由題意可得,四邊形、為矩形,,、∴,∵△DEC≌△PFQ∴當在點的右側(cè)時,∴,解得當在點的左側(cè)時,∴,解得故答案為:或【點睛】此題考查了全等三角形的性質(zhì),矩形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)題意,求得對應(yīng)線段的長,分情況討論列方程求解.10、8【解析】【分析】運用三角形的中位線的知識解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.三、解答題1、【分析】根據(jù)平行四邊形的性質(zhì)可得,,勾股定理求得,,進而求得【詳解】解:四邊形是平行四邊形AB⊥AC,在中,在中,【點睛】本題考查了平行四邊形的性質(zhì),勾股定理,熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.2、(1)見解析;(2)【分析】(1)由正方形的性質(zhì)可得,,由的余角相等可得∠CBG=∠CDE,進而證明△BCG≌△DCE,從而證明CG=CE;(2)證明正方形的性質(zhì)可得,結(jié)合已知條件即可求得,進而勾股定理即可求得的長【詳解】(1)∵BF⊥DE∴∠BFE=90°∵四邊形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE∴,在中,【點睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,掌握三角形全等的性質(zhì)與判定與勾股定理是解題的關(guān)鍵.3、(1)以點C為旋轉(zhuǎn)中心將逆時針旋轉(zhuǎn)就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長線交于點K,如圖,先證明,然后證明,得到,則,過點F作FM⊥BC于M,求出,即可推出,則,即:;法二:過F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質(zhì)求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點G在的角平分線所在直線上運動.過G作,則,最小即是最小,故當M、G、P三點共線時,最??;如圖3-2所示,過點G作GQ⊥AB于Q,連接DG,求出DM和QG的長即可求解.【詳解】(1)∵△ABC和△GEF都是等邊三角形,∴BC=AC,CF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=∠FCG+∠ACF,∴∠FCB=∠GCA,∴△BCF≌△ACG(SAS),∴△BFC可以看作是△AGC繞點C逆時針旋轉(zhuǎn)60度所得;(2)法一:證明:以為邊作,與的延長線交于點K,如圖,∵和均為等邊三角形,∴,∠GFE=60°,∴,∴∠EFH+∠ACB=180°,∴,∵,∴.∵是等邊的中線,∴,∴,∴∴.在與中,∴,∴,∴,過點F作FM⊥BC于M,∴KM=CM,∵∠K=30°,∴∴,∴,∴,即:;法二證明:過F作,.∴是等邊的中線,∴,,∴△FCN≌△FCM(AAS),F(xiàn)C=2FN,∴CM=CN,,同法一,.在與中,∴∴,∴;(3)如圖3-1所示,連接,GM,AG,∵D,E分別是AB,AC的中點,∴DE是△ABC的中位線,CD⊥AB,∴DE∥BC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等邊三角形,∠FDE=30°,∴DE=AE,∵△GEF是等邊三角形,∴EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,∴∴,即點G在的角平分線所在直線上運動.過G作,則,∴最小即是最小,∴當M、G、P三點共線時,最小如圖3-2所示,過點G作GQ⊥AB于Q,連接DG,∴QG=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論