江蘇高考數(shù)列題真題及答案_第1頁
江蘇高考數(shù)列題真題及答案_第2頁
江蘇高考數(shù)列題真題及答案_第3頁
江蘇高考數(shù)列題真題及答案_第4頁
江蘇高考數(shù)列題真題及答案_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇高考數(shù)列題真題及答案

一、單項選擇題1.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}=2a_{n}+1\),則\(a_{3}\)的值為()A.3B.7C.15D.31答案:B2.設等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(a_{3}=5\),\(S_{3}=9\),則\(a_{5}\)的值為()A.7B.9C.11D.13答案:B3.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=2\),\(a_{5}=16\),則公比\(q\)為()A.\(-2\)B.2C.\(\pm2\)D.4答案:B4.數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=n^{2}-9n\),則該數(shù)列的最小項是()A.第4項B.第5項C.第4項或第5項D.第6項答案:C5.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差\(d\neq0\),且\(a_{1}\),\(a_{3}\),\(a_{9}\)成等比數(shù)列,則\(\frac{a_{1}+a_{3}+a_{9}}{a_{2}+a_{4}+a_{10}}\)的值為()A.\(\frac{13}{16}\)B.\(\frac{15}{16}\)C.\(\frac{11}{16}\)D.\(\frac{12}{16}\)答案:A6.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{2}=3\),\(a_{3}+a_{4}=12\),則\(a_{5}+a_{6}\)的值為()A.24B.36C.48D.60答案:C7.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=\frac{1}{1-a_{n}}\),\(a_{1}=2\),則\(a_{2023}\)的值為()A.2B.\(-1\)C.\(\frac{1}{2}\)D.1答案:A8.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(S_{10}=100\),\(S_{100}=10\),則\(S_{110}\)的值為()A.\(-110\)B.0C.110D.220答案:A9.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{n}>0\),且\(a_{5}a_{6}+a_{4}a_{7}=18\),則\(\log_{3}a_{1}+\log_{3}a_{2}+\cdots+\log_{3}a_{10}\)的值為()A.12B.10C.8D.2+\log_{3}5答案:B10.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}-2n+1\),則\(a_{n}\)的通項公式為()A.\(a_{n}=2n-3\)B.\(a_{n}=\begin{cases}0,&n=1\\2n-3,&n\geq2\end{cases}\)C.\(a_{n}=2n-1\)D.\(a_{n}=\begin{cases}0,&n=1\\2n-1,&n\geq2\end{cases}\)答案:B二、多項選擇題1.下列關于等差數(shù)列的說法正確的是()A.若\(\{a_{n}\}\)是等差數(shù)列,\(a_{m}=a\),\(a_{n}=b\),則\(a_{m+n}=\frac{na-mb}{n-m}\)(\(m\neqn\))B.若\(\{a_{n}\}\)是等差數(shù)列,則數(shù)列\(zhòng)(\{2^{a_{n}}\}\)是等比數(shù)列C.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(S_{10}=S_{20}\),則\(S_{30}=0\)D.若\(\{a_{n}\}\)是等差數(shù)列,\(S_{n}\)是其前\(n\)項和,則\(S_{n}\),\(S_{2n}-S_{n}\),\(S_{3n}-S_{2n}\)仍成等差數(shù)列答案:ABCD2.已知等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\),前\(n\)項和為\(S_{n}\),則下列說法正確的是()A.若\(q>1\),則\(\{a_{n}\}\)是遞增數(shù)列B.若\(a_{1}>0\),\(0<q<1\),則\(\{a_{n}\}\)是遞減數(shù)列C.若\(S_{n}=3^{n}+m\)(\(m\)為常數(shù)),則\(m=-1\)D.若\(a_{5}\),\(a_{7}\)是方程\(x^{2}+4x+2=0\)的兩根,則\(a_{6}=\pm\sqrt{2}\)答案:BC3.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=\begin{cases}2a_{n},&0\leqa_{n}<\frac{1}{2}\\2a_{n}-1,&\frac{1}{2}\leqa_{n}<1\end{cases}\),若\(a_{1}=\frac{3}{5}\),則()A.\(a_{2}=\frac{1}{5}\)B.\(a_{3}=\frac{2}{5}\)C.\(a_{4}=\frac{4}{5}\)D.\(a_{5}=\frac{3}{5}\)答案:ABCD4.設等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\),前\(n\)項和為\(S_{n}\),且\(a_{1}>0\),\(S_{6}=S_{10}\),則()A.\(d<0\)B.\(a_{8}=0\)C.\(S_{n}\)的最大值為\(S_{8}\)或\(S_{9}\)D.\(S_{18}=0\)答案:ACD5.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),且\(S_{n}=2a_{n}-1\),則()A.\(a_{1}=1\)B.\(a_{n}=2^{n-1}\)C.\(a_{n}=2n-1\)D.\(S_{n}=2^{n}-1\)答案:ABD6.設等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\),其前\(n\)項積為\(T_{n}\),并且滿足條件\(a_{1}>1\),\(a_{9}a_{10}-1>0\),\(\frac{a_{9}-1}{a_{10}-1}<0\),則下列結論正確的是()A.\(0<q<1\)B.\(a_{9}a_{11}-1<0\)C.\(T_{10}\)是數(shù)列\(zhòng)(\{T_{n}\}\)中的最大值D.使\(T_{n}>1\)成立的最大自然數(shù)\(n\)等于18答案:ABD7.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}-a_{n}=2n\),則()A.\(a_{n}=n^{2}-n+1\)B.\(a_{n}=n^{2}+n-1\)C.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=\frac{n(n^{2}+1)}{3}\)D.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=\frac{n(n^{2}-1)}{3}\)答案:AC8.對于數(shù)列\(zhòng)(\{a_{n}\}\),定義\(H_{n}=\frac{a_{1}+2a_{2}+\cdots+2^{n-1}a_{n}}{n}\)為\(\{a_{n}\}\)的“優(yōu)值”,現(xiàn)在已知某數(shù)列\(zhòng)(\{a_{n}\}\)的“優(yōu)值”\(H_{n}=2^{n}\),則()A.\(a_{1}=2\)B.\(a_{n}=n+1\)C.數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列D.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=\frac{n(n+3)}{2}\)答案:ABCD9.已知數(shù)列\(zhòng)(\{a_{n}\}\)是等比數(shù)列,公比\(q\neq1\),其前\(n\)項和為\(S_{n}\),下列說法正確的有()A.數(shù)列\(zhòng)(\{a_{n+1}-a_{n}\}\)也是等比數(shù)列B.數(shù)列\(zhòng)(\{\frac{1}{a_{n}}\}\)是等比數(shù)列C.若\(a_{1}=1\),\(q=2\),則\(S_{n}=2^{n}-1\)D.若\(a_{1}=1\),\(q=2\),則\(S_{2n}=4^{n}-1\)答案:ABC10.設等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(S_{5}<S_{6}\),\(S_{6}=S_{7}>S_{8}\),則下列結論正確的是()A.\(d<0\)B.\(a_{7}=0\)C.\(S_{9}>S_{5}\)D.\(S_{6}\)與\(S_{7}\)均為\(S_{n}\)的最大值答案:ABD三、判斷題1.若數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}\),則\(\{a_{n}\}\)是等差數(shù)列。()答案:對2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}>0\),\(q>1\),則\(\{a_{n}\}\)一定是遞增數(shù)列。()答案:對3.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=n\),則\(\{a_{n}\}\)是等差數(shù)列。()答案:錯4.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(S_{n}=An^{2}+Bn\)(\(A\)、\(B\)為常數(shù)),則\(\{a_{n}\}\)是等差數(shù)列。()答案:對5.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{3}=4\),\(a_{7}=16\),則\(a_{5}=8\)。()答案:錯6.數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=n+\frac{1}{n}\),則\(\{a_{n}\}\)的最小項為\(a_{1}=2\)。()答案:錯7.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}+a_{5}=10\),\(a_{4}=7\),則\(\{a_{n}\}\)的公差\(d=2\)。()答案:對8.等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(S_{n}=3^{n}+m\),則\(m=-1\)。()答案:對9.若數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=a_{n}+2^{n}\),\(a_{1}=1\),則\(a_{n}=2^{n}-1\)。()答案:對10.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(S_{n}\)是其前\(n\)項和,若\(S_{10}=S_{20}\),則\(S_{30}=0\)。()答案:對四、簡答題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=7\),\(a_{5}+a_{7}=32\),求\(\{a_{n}\}\)的通項公式。答案:設等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\)。已知\(a_{3}=7\),則\(a_{1}+2d=7\)①;又\(a_{5}+a_{7}=32\),即\(a_{1}+4d+a_{1}+6d=32\),\(2a_{1}+10d=32\),化簡得\(a_{1}+5d=16\)②。②-①得\(3d=9\),\(d=3\)。把\(d=3\)代入①得\(a_{1}=1\)。所以\(a_{n}=a_{1}+(n-1)d=1+3(n-1)=3n-2\)。2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{4}=16\),求數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論