考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)評(píng)練習(xí)題_第1頁(yè)
考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)評(píng)練習(xí)題_第2頁(yè)
考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)評(píng)練習(xí)題_第3頁(yè)
考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)評(píng)練習(xí)題_第4頁(yè)
考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)評(píng)練習(xí)題_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,OA⊥OB,OB=4,P是射線(xiàn)OA上一動(dòng)點(diǎn),連接BP,以B為直角頂點(diǎn)向上作等腰直角三角形,在OA上取一點(diǎn)D,使∠CDO=45°,當(dāng)P在射線(xiàn)OA上自O(shè)向A運(yùn)動(dòng)時(shí),PD的長(zhǎng)度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變2、如圖,菱形ABCD的邊長(zhǎng)為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點(diǎn)E,則點(diǎn)E到AC的距離為()A.1 B. C..2 D.23、如圖所示,AB=CD,AD=BC,則圖中的全等三角形共有()A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)4、如圖是用若干個(gè)全等的等腰梯形拼成的圖形,下列說(shuō)法錯(cuò)誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是5、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:26、如圖,以O(shè)為圓心,長(zhǎng)為半徑畫(huà)弧別交于A、B兩點(diǎn),再分別以A、B為圓心,以長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形7、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的是()A.當(dāng)?ABCD是矩形時(shí),∠ABC=90° B.當(dāng)?ABCD是菱形時(shí),AC⊥BDC.當(dāng)?ABCD是正方形時(shí),AC=BD D.當(dāng)?ABCD是菱形時(shí),AB=AC8、如圖,矩形ABCD的對(duì)角線(xiàn)AC和BD相交于點(diǎn)O,若∠AOD=120°,AC=16,則AB的長(zhǎng)為()A.16 B.12 C.8 D.49、如圖,菱形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=,則點(diǎn)C的坐標(biāo)為()A.(,1) B.(1,1) C.(1,) D.(+1,1)10、如圖,的對(duì)角線(xiàn)交于點(diǎn)O,E是CD的中點(diǎn),若,則的值為()A.2 B.4 C.8 D.16第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,正方形的邊長(zhǎng)為4,它的兩條對(duì)角線(xiàn)交于點(diǎn),過(guò)點(diǎn)作邊的垂線(xiàn),垂足為,的面積為,過(guò)點(diǎn)作的垂線(xiàn),垂足為,△的面積為,過(guò)點(diǎn)作的垂線(xiàn),垂足為,△的面積為,△的面積為,那么__,則__.2、如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)P是對(duì)角線(xiàn)AC上一點(diǎn),若點(diǎn)P、A、B組成一個(gè)等腰三角形時(shí),△PAB的面積為_(kāi)__________.3、如圖,矩形ABCD的兩條對(duì)角線(xiàn)AC,BD交于點(diǎn)O,∠AOB=60°,AB=3,則矩形的周長(zhǎng)為_(kāi)____.4、如圖,在四邊形中,,分別是的中點(diǎn),分別以為直徑作半圓,這兩個(gè)半圓面積的和為,則的長(zhǎng)為_(kāi)______.5、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為_(kāi)_____.6、如圖,在正方形紙片ABCD中,E是CD的中點(diǎn),將正方形紙片折疊,點(diǎn)B落在線(xiàn)段AE上的點(diǎn)G處,折痕為AF.若,則CF的長(zhǎng)為_(kāi)____.7、如圖,在正方形ABCD中,AB=4,E為對(duì)角線(xiàn)AC上與A,C不重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F,EG⊥BC于點(diǎn)G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號(hào)為_(kāi)_.8、如圖,在矩形ABCD中,BC=2,AB=x,點(diǎn)E在邊CD上,且CEx,將BCE沿BE折疊,若點(diǎn)C的對(duì)應(yīng)點(diǎn)落在矩形ABCD的邊上,則x的值為_(kāi)______.9、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對(duì)折后展開(kāi)得到折痕EF.點(diǎn)P為BC邊上任意一點(diǎn),若將紙片沿著DP折疊,使點(diǎn)C恰好落在線(xiàn)段EF的三等分點(diǎn)上,則BC的長(zhǎng)等于_________cm.10、七巧板被西方人稱(chēng)為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長(zhǎng)為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖:在中,,,點(diǎn)為的中點(diǎn),點(diǎn)為直線(xiàn)上的動(dòng)點(diǎn)(不與點(diǎn),重合),連接,,以為邊在的上方作等邊,連接.(1)是________三角形;(2)如圖1,當(dāng)點(diǎn)在邊上時(shí),運(yùn)用(1)中的結(jié)論證明;(3)如圖2,當(dāng)點(diǎn)在的延長(zhǎng)線(xiàn)上時(shí),(2)中的結(jié)論是否依然成立?若成立,請(qǐng)加以證明,若不成立,請(qǐng)說(shuō)明理由.2、如圖,在Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),.(1)試判斷四邊形BDCE的形狀,并證明你的結(jié)論;(2)若∠ABC=30°,AB=4,則四邊形BDCE的面積為.3、在菱形ABCD中,∠ABC=60°,P是直線(xiàn)BD上一動(dòng)點(diǎn),以AP為邊向右側(cè)作等邊APE(A,P,E按逆時(shí)針排列),點(diǎn)E的位置隨點(diǎn)P的位置變化而變化.(1)如圖1,當(dāng)點(diǎn)P在線(xiàn)段BD上,且點(diǎn)E在菱形ABCD內(nèi)部或邊上時(shí),連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點(diǎn)P在線(xiàn)段BD上,且點(diǎn)E在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說(shuō)明理由;(3)當(dāng)點(diǎn)P在直線(xiàn)BD上時(shí),其他條件不變,連接BE.若AB=2,BE=2,請(qǐng)直接寫(xiě)出APE的面積.4、如圖1,正方形ABCD的邊長(zhǎng)為a,E為邊CD上一動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)C、D不重合),連接AE交對(duì)角線(xiàn)BD于點(diǎn)P,過(guò)點(diǎn)P作PF⊥AE交BC于點(diǎn)F.(1)求證:PA=PF;(2)如圖2,過(guò)點(diǎn)F作FQ⊥BD于Q,在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,PQ的長(zhǎng)度是否發(fā)生變化?若不變,求出PQ的長(zhǎng);若變化,請(qǐng)說(shuō)明變化規(guī)律.(3)請(qǐng)寫(xiě)出線(xiàn)段AB、BF、BP之間滿(mǎn)足的數(shù)量關(guān)系,不必說(shuō)明理由.5、在平面直角坐標(biāo)系xOy中,點(diǎn)A(x,﹣m)在第四象限,A,B兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),x=+n(n為常數(shù)),點(diǎn)C在x軸正半軸上,(1)如圖1,連接AB,直接寫(xiě)出AB的長(zhǎng)為;(2)延長(zhǎng)AC至D,使CD=AC,連接BD.①如圖2,若OA=AC,求線(xiàn)段OC與線(xiàn)段BD的關(guān)系;②如圖3,若OC=AC,連接OD.點(diǎn)P為線(xiàn)段OD上一點(diǎn),且∠PBD=45°,求點(diǎn)P的橫坐標(biāo).-參考答案-一、單選題1、D【解析】【分析】過(guò)點(diǎn)作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線(xiàn)段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過(guò)點(diǎn)作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長(zhǎng)度保持不變,故選:D.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過(guò)作輔助線(xiàn),構(gòu)造矩形和全等三角形是解題關(guān)鍵.2、C【解析】【分析】根據(jù)題意連接BD,過(guò)點(diǎn)E作EF⊥AC于點(diǎn)F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進(jìn)而求出A′E,再利用30度角所對(duì)直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過(guò)點(diǎn)E作EF⊥AC于點(diǎn)F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長(zhǎng)為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點(diǎn)睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).3、D【解析】【分析】根據(jù)平行四邊形的判定與性質(zhì),求解即可.【詳解】解:∵AB=CD,AD=BC∴四邊形為平行四邊形∴,,,∴、又∵,∴、∴圖中的全等三角形共有4對(duì)故選:D【點(diǎn)睛】此題考查了平行四邊形的判定與性質(zhì),全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握平行四邊形的判定與性質(zhì).4、D【解析】【分析】如圖(見(jiàn)解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項(xiàng);先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線(xiàn)段的和差、等量代換可得,由此可判斷選項(xiàng).【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項(xiàng)B正確;沒(méi)有指明哪個(gè)角是底角,梯形的底角是或,選項(xiàng)D錯(cuò)誤;如圖,連接,,是等邊三角形,,,點(diǎn)共線(xiàn),,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項(xiàng)A、C正確;故選:D.【點(diǎn)睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握各判定與性質(zhì)是解題關(guān)鍵.5、D【解析】【分析】?jī)山M對(duì)角分別相等的四邊形是平行四邊形,所以∠A和∠C是對(duì)角,∠B和∠D是對(duì)角,對(duì)角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對(duì)角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點(diǎn)睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時(shí),應(yīng)仔細(xì)觀(guān)察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.6、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點(diǎn)睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對(duì)角線(xiàn)垂直的平行四邊形是菱形.7、D【解析】【分析】由矩形的四個(gè)角是直角可判斷A,由菱形的對(duì)角線(xiàn)互相垂直可判斷B,由正方形的對(duì)角線(xiàn)相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時(shí),∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時(shí),AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時(shí),AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時(shí),AB=BC,故D符合題意;故選D【點(diǎn)睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.8、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì),等邊三角形的性質(zhì)和判定,熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.9、B【解析】【分析】作CD⊥x軸,根據(jù)菱形的性質(zhì)得到OC=OA=,在Rt△OCD中,根據(jù)勾股定理求出OD的值,即可得到C點(diǎn)的坐標(biāo).【詳解】:作CD⊥x軸于點(diǎn)D,則∠CDO=90°,∵四邊形OABC是菱形,OA=,∴OC=OA=,又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC=,CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(負(fù)值舍去),則點(diǎn)C的坐標(biāo)為(1,1),故選:B.【點(diǎn)睛】此題考查了菱形的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理,根據(jù)勾股定理和等腰直角三角形的性質(zhì)求出OD=CD=1是解決問(wèn)題的關(guān)鍵.10、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線(xiàn)平分三角形的面積可得根據(jù)三角形的中線(xiàn)平分三角形的面積可得S△DOE=4,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點(diǎn)E是CD的中點(diǎn),∴S△DOE=S△COD=4,故選:B.【點(diǎn)睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線(xiàn)的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線(xiàn)平分三角形的面積是解答本題的關(guān)鍵.二、填空題1、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過(guò)計(jì)算三角形的面積得出規(guī)律.2、或或3【解析】【分析】過(guò)B作BM⊥AC于M,根據(jù)矩形的性質(zhì)得出∠ABC=90°,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫(huà)出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當(dāng)AB=BP=3時(shí),如圖1,過(guò)B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當(dāng)AB=AP=3時(shí),如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線(xiàn)NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、等腰三角形的判定以及勾股定理求邊長(zhǎng),熟練掌握矩形的性質(zhì),利用等腰三角形的判定,分成三種情況討論,是解決本題的關(guān)鍵.3、##【解析】【分析】根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長(zhǎng)是AB+BC+CD+AD=6+6.故答案為:6+6.【點(diǎn)睛】本題考查了矩形性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn),關(guān)鍵是求出AD的長(zhǎng).4、4【解析】【分析】根據(jù)題意連接BD,取BD的中點(diǎn)M,連接EM、FM,EM交BC于N,根據(jù)三角形的中位線(xiàn)定理推出EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根據(jù)勾股定理求出ME2+FM2=EF2,根據(jù)圓的面積公式求出陰影部分的面積即可.【詳解】解:連接BD,取BD的中點(diǎn)M,連接EM、FM,延長(zhǎng)EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分別是AD、BC、BD的中點(diǎn),∴EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴陰影部分的面積是:π(ME2+FM2)=EF2π=8π,∴EF=4.故答案為:4.【點(diǎn)睛】本題主要考查對(duì)勾股定理,三角形的內(nèi)角和定理,多邊形的內(nèi)角和定理,三角形的中位線(xiàn)定理,圓的面積,平行線(xiàn)的性質(zhì),面積與等積變形等知識(shí)點(diǎn)的理解和掌握,能正確作輔助線(xiàn)并求出ME2+FM2的值是解答此題的關(guān)鍵.5、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).6、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運(yùn)用題目中的條件表示出EF列出方程式解題的關(guān)鍵.7、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點(diǎn)E為AC上一動(dòng)點(diǎn),當(dāng)DE⊥AC時(shí),根據(jù)垂線(xiàn)段最短可得此時(shí)DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點(diǎn)O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長(zhǎng)DE,交FG于M,交FB于點(diǎn)H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點(diǎn)E為AC上一動(dòng)點(diǎn),∴根據(jù)垂線(xiàn)段最短,當(dāng)DE⊥AC時(shí),DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯(cuò)誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線(xiàn)段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.8、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點(diǎn)落在邊上和點(diǎn)落在邊上,分別畫(huà)出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計(jì)算即可.【詳解】解:如圖1,當(dāng)點(diǎn)落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點(diǎn)落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點(diǎn)睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問(wèn)題的前提.9、或【解析】【分析】分為將紙片沿縱向?qū)φ?,和沿橫向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當(dāng)將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點(diǎn)在中有如圖:當(dāng)將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點(diǎn)故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問(wèn)題應(yīng)全面,不應(yīng)丟解.10、4【解析】【分析】設(shè)陰影小正方形的邊長(zhǎng)為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進(jìn)而得出大正方形的對(duì)角線(xiàn)的長(zhǎng)度是4xcm,最后求出邊長(zhǎng)a即可.【詳解】解:設(shè)陰影小正方形的邊長(zhǎng)為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長(zhǎng)為cm,則大正方形的對(duì)角線(xiàn)長(zhǎng)為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點(diǎn)睛】本題主要考查七巧板的知識(shí),熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.三、解答題1、(1)等邊;(2)見(jiàn)解析;(3)成立,理由見(jiàn)解析【分析】(1)根據(jù)含30度角的直角三角形的性質(zhì),直角三角形斜邊上的中線(xiàn)等于斜邊的一半可證明,即可證明△OBC是等邊三角形;

(2)先證明,即可利用SAS證明,得到;(3)先證明,即可利用SAS證明,得到.【詳解】(1)∵∠ACB=90°,∠A=30°,O是AB的中點(diǎn),∴,∴△OBC是等邊三角形,故答案為:等邊;(2)由(1)可知,,,是等邊三角形,,,,即,在和中,,;(3)成立,證明:由(1)可知,,,是等邊三角形,,,,即,在和中,,.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì)與判定,全等三角形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),直角三角形斜邊上的中線(xiàn),熟練掌握等邊三角形的性質(zhì)與判定條件是解題的關(guān)鍵.2、(1)四邊形是菱形,證明見(jiàn)解析;(2)【分析】(1)先證明四邊形是平行四邊形,再利用直角三角形斜邊上的中線(xiàn)等于斜邊的一半,證明從而可得結(jié)論;(2)先求解再求解的面積,再利用菱形的性質(zhì)可得菱形的面積.【詳解】證明:(1)四邊形是菱形,理由如下:,四邊形是平行四邊形,∠ACB=90°,D為AB中點(diǎn),四邊形是菱形.(2)∠ABC=30°,AB=4,∠ACB=90°,D為AB中點(diǎn),四邊形是菱形,故答案為:【點(diǎn)睛】本題考查的是平行四邊形的判定,菱形的判定與性質(zhì),直角三角形斜邊上的中線(xiàn)的性質(zhì),含的直角三角形的性質(zhì),勾股定理的應(yīng)用,掌握“有一組鄰邊相等的平行四邊形是菱形”是解本題的關(guān)鍵.3、(1)BP=CE,CE⊥BC;(2)仍然成立,見(jiàn)解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點(diǎn)P在BD的延長(zhǎng)線(xiàn)上時(shí)或點(diǎn)P在線(xiàn)段DB的延長(zhǎng)線(xiàn)上時(shí),連接AC交BD于點(diǎn)O,由∠BCE=90°,根據(jù)勾股定理求出CE的長(zhǎng)即得到BP的長(zhǎng),再求AO、PO、PD的長(zhǎng)及等邊三角形APE的邊長(zhǎng)可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長(zhǎng)CE交AD于點(diǎn)H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設(shè)CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立;(3)如圖3中,當(dāng)點(diǎn)P在BD的延長(zhǎng)線(xiàn)上時(shí),連接AC交BD于點(diǎn)O,連接CE,BE,作EF⊥AP于F,∵四邊形ABCD是菱形,∴AC⊥BDBD平分∠ABC,∵∠ABC=60°,AB=2,∴∠ABO=30°,∴AO=AB=,OB=AO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=2,BC=AB=2,∴CE==8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP===2,∵△APE是等邊三角形,∴S△AEP=×(2)2=7,如圖4中,當(dāng)點(diǎn)P在DB的延長(zhǎng)線(xiàn)上時(shí),同法可得AP===2,∴S△AEP=×(2)2=31,【點(diǎn)睛】此題是四邊形的綜合題,重點(diǎn)考查菱形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵是正確地作出解題所需要的輔助線(xiàn),將菱形的性質(zhì)與三角形全等的條件聯(lián)系起來(lái),此題難度較大,屬于考試壓軸題.4、(1)見(jiàn)解析;(2)PQ的長(zhǎng)不變,見(jiàn)解析;(3)AB+BF=PB【分析】(1)連接PC,由正方形的性質(zhì)得到,,然后依據(jù)全等三角形的判定定理證明,由全等三角形的性質(zhì)可知,,接下來(lái)利用四邊形的內(nèi)角和為360°可證明,于是得到,故此可證明;(2)連接AC交BD于點(diǎn)O,依據(jù)正方形的性質(zhì)可知為等腰直角三角形,于是可求得AO的長(zhǎng),接下來(lái),證明,依據(jù)全等三角形的性質(zhì)可得到;(3)過(guò)點(diǎn)P作,,垂足分別為M,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論