版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版9年級數(shù)學上冊【旋轉(zhuǎn)】同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、已知點P坐標為,將線段OP繞原點O逆時針旋轉(zhuǎn)90°得到線段,則點P的對應點的坐標為(
)A. B. C. D.2、如圖,在中,,,將繞點順時針旋轉(zhuǎn)得到,點A、B的對應點分別是,,點是邊的中點,連接,,.則下列結(jié)論錯誤的是(
)A. B.,C. D.3、如圖,邊長為3的正五邊形ABCDE,頂點A、B在半徑為3的圓上,其他各點在圓內(nèi),將正五邊形ABCDE繞點A逆時針旋轉(zhuǎn),當點E第一次落在圓上時,則點C轉(zhuǎn)過的度數(shù)為()A.12° B.16° C.20° D.24°4、如圖,在中,,將繞點C逆時針旋轉(zhuǎn)得到,點A,B的對應點分別為D,E,連接.當點A,D,E在同一條直線上時,下列結(jié)論一定正確的是(
)A. B. C. D.5、二次函數(shù)的圖象的頂點坐標是,且圖象與軸交于點.將二次函數(shù)的圖象以原點為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)180°,則旋轉(zhuǎn)后得到的函數(shù)解析式為(
)A. B.C. D.6、下列交通標識中,不是軸對稱圖形,是中心對稱圖形的是()A. B. C. D.7、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是(
)A. B.1 C.2 D.8、如圖,在中,,將繞點逆時針旋轉(zhuǎn)到的位置,使得,則的度數(shù)是(
)A. B. C. D.9、如圖,由個小正方形組成的田字格,的頂點都是小正方形的頂點,在田字格上能畫出與成軸對稱,且頂點都在小正方形頂點上的三角形的個數(shù)共有()A.2個 B.3個 C.4個 D.5個10、如圖,與關(guān)于成中心對稱,不一定成立的結(jié)論是(
)A. B.C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、將正方形OEFG放在平面直角坐標系中,O是坐標原點,若點E的坐標為,則點G的坐標為_____.2、如圖,把△ABC繞點C順時針旋轉(zhuǎn)25°,得到△A′B′C,A′B′交AC于點D,若∠A′DC=90°,則∠A度數(shù)為___________.3、在平面直角坐標系中,點P(﹣3,1)關(guān)于坐標原點中心對稱的點P′的坐標是____.4、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.5、在△ABC中,∠C=90°,cm,cm,繞點C將△ABC旋轉(zhuǎn)使一直角邊的另一個端點落在直線AB上一點K,則線段BK的長為_________cm6、在平面直角坐標系中,直角如圖放置,點A的坐標為,,每一次將繞點O逆時針旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)后得到,第二次旋轉(zhuǎn)后得到,依次類推,則點的坐標為______.7、若點與關(guān)于原點對稱,則=_______.8、如圖,在菱形OBCD中,OB=1,相鄰兩內(nèi)角之比為1:2,將菱形OBCD繞頂點O順時針旋轉(zhuǎn)90°,得到菱形OB′C′D′視為一次旋轉(zhuǎn),則菱形旋轉(zhuǎn)45次后點C的坐標為_____.9、如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點P的坐標為____________________.10、如圖所示,五角星的頂點是一個正五邊形的五個頂點,這個五角星繞中心至少旋轉(zhuǎn)__________度能和自身重合.三、解答題(6小題,每小題5分,共計30分)1、如圖,在平面直角坐標系中,拋物線M的表達式為y=﹣x2+2x,與x軸交于O、A兩點,頂點為點B.(1)求證:△OAB為等腰直角三角形:(2)已知點P在y軸上,且OP=1,點C在第一象限,△ABC為等腰直角三角形,將拋物線M進行平移,使其對稱軸經(jīng)過點C,請問平移后的拋物線能否經(jīng)過點P?如果能,求出平移方式;如果不能,說明理由.2、如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關(guān)于原點對稱的點B′的坐標:;(2)平移△ABC,使平移后點A的對應點A1的坐標為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2.3、定義:將圖形M繞點P順時針旋轉(zhuǎn)90°得到圖形N,則圖形N稱為圖形M關(guān)于點P的“垂直圖形”.例如:在下圖中,點D為點C關(guān)于點P的“垂直圖形”.(1)點A關(guān)于原點O的“垂直圖形”為點B.①若點A的坐標為(0,2),直接寫出點B的坐標;②若點B的坐標為(2,1),直接寫出點A的坐標;(2)E(-3,3),F(xiàn)(-2,3),G(a,0).線段EF關(guān)于點G的“垂直圖形”記為E′F′,點E的對應點為E′,點F的對應點為F′.①求點E′的坐標;②當點G運動時,求的最小值.4、如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD、CE交于點F.(1)求證:;(2)若AB=2,,當四邊形ADFC是菱形時,求BF的長.5、如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),的三個頂點分別為,,.(1)畫出關(guān)于原點對稱的,并寫出點的坐標;(2)畫出繞點順時針旋轉(zhuǎn)后得到的,并寫出點的坐標.6、如圖,方格中,每個小正方形的邊長都是單位1,△ABC的位置如圖.(1)畫出將△ABC向右平移2個單位得到的△A1B1C1;(2)畫出將△ABC繞點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2;(3)寫出C2點的坐標.-參考答案-一、單選題1、B【解析】【分析】如圖,作軸于,軸于,證明,有,,進而可得點坐標.【詳解】解:如圖,作軸于,軸于,∵,∴在和中∵∴∴,∴故選B.【考點】本題考查了繞原點旋轉(zhuǎn)90°的點坐標,三角形全等的判定與性質(zhì).解題的關(guān)鍵在于熟練掌握旋轉(zhuǎn)的性質(zhì).2、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可判斷A;根據(jù)直角三角形的性質(zhì)、三角形外角的性質(zhì)、平行線的判定方法可判斷B;根據(jù)平行四邊形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)可判斷C;利用等腰三角形的性質(zhì)和含30°角的直角三角形的性質(zhì)可判斷D.【詳解】A.∵將△ABC繞點C順時針旋轉(zhuǎn)60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,∴△BCE是等邊三角形,∴BE=BC,故A正確;B.∵點F是邊AC中點,∴CF=BF=AF=AC,∵∠BCA=30°,∴BA=AC,∴BF=AB=AF=CF,∴∠FCB=∠FBC=30°,延長BF交CE于點H,則∠BHE=∠HBC+∠BCH=90°,∴∠BHE=∠DEC=90°,∴BF//ED,∵AB=DE,∴BF=DE,故B正確.C.∵BF∥ED,BF=DE,∴四邊形BEDF是平行四邊形,∴BC=BE=DF,∵AB=CF,BC=DF,AC=CD,∴△ABC≌△CFD,∴,故C正確;D.∵∠ACB=30°,∠BCE=60°,∴∠FCG=30°,∴FG=CG,∴CG=2FG.∵∠DCE=∠CDG=30°,∴DG=CG,∴DG=2FG.故D錯誤.故選D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),含30°角的直角邊等于斜邊的一半,以及平行四邊形的判定與性質(zhì)等知識,綜合性較強,正確理解旋轉(zhuǎn)性質(zhì)是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)點E旋轉(zhuǎn)的角度和點C旋轉(zhuǎn)的角度相等,所以求出點E旋轉(zhuǎn)的角度即可.【詳解】解:如圖設(shè)圓心為O,連接OA,OB,點E落在圓上的點E'處.AB=OA=OB,∠OAB=,同理∠OAE'=,∠EAB=,∠EAO=∠EAB-∠OAB=,∠EAE'=∠OAE'-∠EAO=-=點E旋轉(zhuǎn)的角度和點C旋轉(zhuǎn)的角度相等,點C旋轉(zhuǎn)的角度為,故選A.【考點】本題主要考查旋轉(zhuǎn)的性質(zhì),注意與圓的性質(zhì)的綜合.4、D【解析】【分析】由旋轉(zhuǎn)可知,即可求出,由于,則可判斷,即A選項錯誤;由旋轉(zhuǎn)可知,由于,即推出,即B選項錯誤;由三角形三邊關(guān)系可知,即可推出,即C選項錯誤;由旋轉(zhuǎn)可知,再由,即可證明為等邊三角形,即推出.即可求出,即證明,即D選項正確;【詳解】由旋轉(zhuǎn)可知,∵點A,D,E在同一條直線上,∴,∵,∴,故A選項錯誤,不符合題意;由旋轉(zhuǎn)可知,∵為鈍角,∴,∴,故B選項錯誤,不符合題意;∵,∴,故C選項錯誤,不符合題意;由旋轉(zhuǎn)可知,∵,∴為等邊三角形,∴.∴,∴,故D選項正確,符合題意;故選D.【考點】本題考查旋轉(zhuǎn)的性質(zhì),三角形三邊關(guān)系,等邊三角形的判定和性質(zhì)以及平行線的判定.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.5、C【解析】【分析】設(shè)將二次函數(shù)的圖象以原點為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)180°后為:;根據(jù)旋轉(zhuǎn)的性質(zhì),得的圖象的頂點坐標是,且圖象與軸交于點,得,再通過列方程并求解,即可得到表達式并轉(zhuǎn)換為頂點式,即可得到答案.【詳解】設(shè)將二次函數(shù)的圖象以原點為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)180°后為:∵二次函數(shù)的圖象的頂點坐標是,且圖象與軸交于點∴的圖象的頂點坐標是,且圖象與軸交于點∴∴,∴,∴∴∴∴故選:C.【考點】本題考查了二次函數(shù)、旋轉(zhuǎn)的知識;解題的關(guān)鍵是熟練掌握二次函數(shù)圖像及解析式、旋轉(zhuǎn)的性質(zhì),從而完成求解.6、D【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.既是軸對稱圖形,又是中心對稱圖形,故本選項不符合題意;C.既不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項符合題意.故選:D.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.7、A【解析】【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.8、C【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)得AC′=AC,∠B′AB=∠C′AC,再根據(jù)等腰三角形的性質(zhì)得∠AC′C=∠ACC′,然后根據(jù)平行線的性質(zhì)由CC′∥AB得∠ACC′=∠CAB=70°,則∠AC′C=∠ACC′=70°,再根據(jù)三角形內(nèi)角和計算出∠CAC′=40°,所以∠B′AB=40°.【詳解】∵繞點逆時針旋轉(zhuǎn)到的位置,∴,,∴,∵,∴,∴,∴,∴,故選C.【考點】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了平行線的性質(zhì).9、C【解析】【分析】因為頂點都在小正方形上,故可分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸進行尋找.【詳解】分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸,作軸對稱圖形:則△ABM、△ANB、△EHF、△EFC都是符合題意的三角形.故選:C.【考點】考查了利用軸對稱涉及圖案的知識,關(guān)鍵是根據(jù)要求頂點在格點上尋找對稱軸,有一定難度,不要漏解.10、D【解析】【分析】根據(jù)中心對稱的性質(zhì)即可判斷.【詳解】解:對應點的連線被對稱中心平分,A,B正確;成中心對稱圖形的兩個圖形是全等形,那么對應線段相等,C正確;和不是對應角,D錯誤.故選:D.【考點】本題考查成中心對稱兩個圖形的性質(zhì):對應點的連線被對稱中心平分;成中心對稱圖形的兩個圖形是全等形.二、填空題1、或【解析】【分析】先利用正方形的性質(zhì),利用旋轉(zhuǎn)畫出正方形OEFG,從而得到G點的坐標.【詳解】把EO繞E點順時針(或逆時針)旋轉(zhuǎn)90°得到對應點為G(或G′),如圖,則G點的坐標為(2,-3)或G′的坐標為(﹣2,3),【考點】本題考查坐標與圖形的變換,涉及旋轉(zhuǎn)、正方形的性質(zhì)等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.2、65°【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得知,從而求得的度數(shù),又因為的對應角是,即可求出的度數(shù).【詳解】繞著點時針旋轉(zhuǎn),得到,的對應角是故答案為:.【考點】此題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是正確確定對應角.3、(3,-1)【解析】【分析】根據(jù)關(guān)于原點對稱的點的坐標特點解答即可.【詳解】解:∵點P的坐標為(?3,1),∴和點P關(guān)于原點中心對稱的點P′的坐標是(3,?1),故填:(3,-1).【考點】本題考查的是關(guān)于原點對稱的點的坐標特點,掌握兩個點關(guān)于原點對稱時,它們的坐標符號相反,即點P(x,y)關(guān)于原點O的對稱點是P′(?x,?y)是解題的關(guān)鍵.4、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關(guān)鍵.5、3或8【解析】【分析】由勾股定理可求AB的長,由面積可求CH的長,由勾股定理可求AH,BH的長,分兩種情況討論,由等腰三角形的性質(zhì)可求解.【詳解】解:如圖,過點C作CH⊥AB于H,∵∠ACB=90°,cm,cm,∴AB=cm,∵S△ABC=×AC×BC=×AB×CH,∴×2=5×CH,∴CH=2cm,∴AH=cm,∴BH=4cm,當點A落在直線AB上時,則AC=CK,∵CH⊥AB,∴KH=AH=1cm,∴BK=5-2=3cm,當點B落在直線AB上時,則CB=CK',∵CH⊥AB,∴K'H=BH=4cm,∴BK'=8cm,綜上所述:BK=3cm或8cm,故答案為:3或8.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),勾股定理,利用分類討論思想解決問題是解題的關(guān)鍵.6、(,)【解析】【分析】由題意可得,(,),根據(jù)題意,每旋轉(zhuǎn)四次,點B就又回到第一象限,用可知點在第三象限,即可得到答案.【詳解】在直角中,點A的坐標為,,(,)由已知可得:第一次旋轉(zhuǎn)后,如圖,在第二象限,(,)第二次旋轉(zhuǎn)后,在第三象限,(,)第三次旋轉(zhuǎn)后,在第四象限,(,)第四次旋轉(zhuǎn)后,在第一象限,(,)......如此,旋轉(zhuǎn)4次一循環(huán)點在第三象限,(,)故答案為:(,).【考點】本題考查了旋轉(zhuǎn)變換,涉及含30度角的直角三角形,確定旋轉(zhuǎn)幾次一循環(huán)是解題的關(guān)鍵.7、##0.5##【解析】【詳解】解:∵點(a,1)與(﹣2,b)關(guān)于原點對稱,∴b=﹣1,a=2,∴==.故答案為:.8、(,﹣)【解析】【分析】先求出菱形的內(nèi)角度數(shù),過作軸于點,在△中,利用特殊角度數(shù)及邊長求解和長,則點坐標可求,由,得出菱形4次旋轉(zhuǎn)一周,4次一個循環(huán),由,得出菱形旋轉(zhuǎn)45次后點與點重合,即可得出答案.【詳解】解:∵四邊形OBCD是菱形,相鄰兩內(nèi)角之比為1:2,∴∠C=∠BOD=60°,∠D=∠OBC=120°.根據(jù)旋轉(zhuǎn)性質(zhì)可得∠OB′C′=120°,∴∠C′B′H=60°.過C′作C′H⊥y軸于點H,如圖所示:在Rt△C′B′H中,B′C′=1,,..坐標為,,∵360°÷90°=4,∴菱形4次旋轉(zhuǎn)一周,4次一個循環(huán),∵45÷4=11……1,菱形旋轉(zhuǎn)45次后點與點重合,坐標為,;故答案為:,.【考點】本題主要考查了菱形的性質(zhì),旋轉(zhuǎn)的性質(zhì),以及坐標與圖形變化,解決此類問題要熟知旋轉(zhuǎn)后的不變量,得出規(guī)律是解題的關(guān)鍵.9、(6053,2).【解析】【分析】根據(jù)前四次的坐標變化總結(jié)規(guī)律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發(fā)現(xiàn)點P的位置4次一個循環(huán),∵2017÷4=504余1,P2017的縱坐標與P1相同為2,橫坐標為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點:坐標與圖形變化﹣旋轉(zhuǎn);規(guī)律型:點的坐標.10、72【解析】【分析】根據(jù)題意,五角星的五個角全等,根據(jù)圖形間的關(guān)系可得答案.【詳解】根據(jù)題意,五角星的頂點是一個正五邊形的五個頂點,這個五角星可以由一個基本圖形(圖中的陰影部分)繞中心O至少經(jīng)過4次旋轉(zhuǎn)而得到,每次旋轉(zhuǎn)的度數(shù)為360°除以5,為72度.故答案為:72【考點】此題主要考查了旋轉(zhuǎn)對稱圖形,圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應點到旋轉(zhuǎn)中心的距離相等.三、解答題1、(1)見詳解(2)將拋物線M向右平移個單位,再向上平移個點,得過點C1和點P的拋物線;拋物線M向右平移個單位,再向上平移得出過點C2和點P的拋物線;拋物線M向右平移個單位。再向上平移個單位,得點過點C3與P的拋物線【解析】【分析】(1)將拋物線M配方為頂點式得出拋物線的對稱軸為x=2,拋物線的頂點B(2,2),然后求出點A(4,0),根據(jù)對稱軸求出點E(2,O),BE⊥OA,證明△OEB為等腰直角三角形,再證△AEB為等腰直角三角形即可;(2)根據(jù)△ABC為等腰直角三角形,分以下三種情況,以AB為直角邊,點B為直角頂點,將AB繞點B逆時針旋轉(zhuǎn)90°,得出點C1(4,4)將拋物線M向右平移2個單位,再向上平移2個點,得出以C1為頂點的拋物線為,以AB為直角邊,以點A直角頂點,將AB繞點A順時針旋轉(zhuǎn)90°,得AC2,求出點C2(6,2),拋物線M向右平移4個單位得出過頂點C2的拋物線;以AB為斜邊,點C3為直角頂點,點C3在AC1的中點,C3(4,2)即可.(1)解:拋物線M的表達式為,∴拋物線的對稱軸為x=2,拋物線的頂點B(2,2),拋物線與x軸的交點,解得:,∴點A(4,0),∵拋物線對稱軸為x=2,∴點E(2,O),BE⊥OA,∵OE=BE=2,∠OEB=90°,∴△OEB為等腰直角三角形,∴∠BOE=∠OBE=45°,∵AE=OA-OE=4-2=2,∴BE=AE,∠AEB=90°,∴△AEB為等腰直角三角形,∴∠EBA=∠EAB=45°,∴∠BOE=∠OBE=∠EBA=∠EAB=45°,∴OB=AB,∠OBA=∠OBE+∠ABE=45°+45°=90°,∴△OAB為等腰直角三角形(2)解:∵△ABC為等腰直角三角形,分以下三種情況,以AB為直角邊,點B為直角頂點,將AB繞點B逆時針旋轉(zhuǎn)90°,∴∠BAC1=45°,∴∠CAO=∠OAB+∠C1AB=45°+45°=90°,∴CA⊥x軸,∵∠OBA+∠ABC1=90°+90°=180°,∴點O、B、C1三點共線,∵∠C1OA=45°,∴△OAC1為等腰直角三角形,∴C1A=OA=4,∴點C1(4,4)∵OP=1,∴點P(0,1)設(shè)過點P與C1形狀與M斜體的拋物線解析式為,代入坐標得解得∴,將拋物線M向右平移個單位,再向上平移個點,得過點C1和點P的拋物線以AB為直角邊,以點A直角頂點,將AB繞點A順時針旋轉(zhuǎn)90°,得AC2,∵∠C2BA=45°=∠BAO,∴BC2∥OA,∠OBA=∠C2AB,∴AC2∥OB,∴四邊形OBC2A,∴BC2=OA=4,∴點C2橫坐標為OE+BC2=2+4=6,∴點C2(6,2),∴點P(0,1)設(shè)過點P與C2形狀與M斜體的拋物線解析式為,代入坐標得解得∴∴,∴拋物線M向右平移個單位,再向上平移得出過點C2和點P的拋物線;以AB為斜邊,點C3為直角頂點,點C3在AC1的中點,C3(4,2)∵點P(0,1)設(shè)過點P與C3形狀與M斜體的拋物線解析式為,代入坐標得解得∴∴,∴拋物線M向右平移個單位。再向上平移個單位,得點過點C3與P的拋物線【考點】本題考查圖形與坐標,待定系數(shù)法求拋物線解析式,二次函數(shù)的性質(zhì),等腰直角三角形,圖形旋轉(zhuǎn),拋物線平移,掌握圖形與坐標,待定系數(shù)法求拋物線解析式,二次函數(shù)的性質(zhì),等腰直角三角形,圖形旋轉(zhuǎn),拋物線平移是解題關(guān)鍵.2、(1)(4,﹣1);(2)見解析;(3)見解析.【解析】【分析】(1)根據(jù)關(guān)于原點對稱的兩點的橫縱坐標均與原來點的橫縱坐標互為相反數(shù),據(jù)此可得答案;(2)將三個點分別向右平移3個單位、再向上平移1個單位,繼而首尾順次連接即可;(3)將三個點分別繞原點O逆時針旋轉(zhuǎn)90°后得到對應點,再首尾順次連接即可.【詳解】(1)點B關(guān)于原點對稱的點B′的坐標為(4,﹣1),故答案為:(4,﹣1);(2)如圖所示,△A1B1C1即為所求.(3)如圖所示,△A2B2C2即為所求.【考點】本題主要考查作圖—平移變換、旋轉(zhuǎn)變換,解題的關(guān)鍵是掌握平移變換和旋轉(zhuǎn)變換的定義與性質(zhì),并據(jù)此得出變換后的對應點.3、(1)①B(2,0);②A(-1,2);(2)①E′(3+a,3+a);②FF′的最小值為3.【解析】【分析】(1)①②根據(jù)“垂直圖形”的定義解決問題即可;(2)①構(gòu)造全等三角形,利用全等三角形的性質(zhì)求解即可;②△FGF′是等腰直角三角形,當FG⊥x軸時,F(xiàn)G取得最小值,即FF′有最小值,據(jù)此求解即可解決問題.(1)解:①如圖中,觀察圖象可知B(2,0);②如圖,∵∠AOB=∠ACO=∠ODB=90°,∴∠A+∠AOC=90°,∠AOC+∠BOD=90°,∴∠A=∠BOD,∵AO=OB,∴△AOC≌△OBD(AAS),∴OC=BD=1,AC=OD=2,∴A(-1,2);(2)解:①如圖,過點E作EP⊥x軸于P,過點E′作E′H⊥x軸于H.∵∠EPG=∠EGE′=∠GHE′=90°,∴∠E+∠PGE=90°,∠PGE+∠E′GH=90°,∴∠E=∠E′GH,∵EG=GE′,∴△EPG≌△GHE′(AAS),∴EP=GH=3,PG=E′H=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 圍巖收斂施工方案(3篇)
- 做木門活動策劃方案(3篇)
- 路燈接線施工方案(3篇)
- 粉塵車間施工方案(3篇)
- 大學汽車活動方案策劃(3篇)
- 春節(jié)京劇活動策劃方案(3篇)
- 市場營銷操作手冊(標準版)
- 2025年航空貨運代理操作指南
- 方案書制作指南
- 2025年中職工業(yè)機器人(故障排查綜合)試題及答案
- 健合集團在線測評原題
- 2024年河北省中考歷史試題卷(含答案逐題解析)
- DL∕T 5776-2018 水平定向鉆敷設(shè)電力管線技術(shù)規(guī)定
- 國防裝備全壽命周期管理
- 人教版小學六年級下冊數(shù)學教材習題
- 頸椎病-小講課
- 2022年版煤礦安全規(guī)程
- 文旅夜游燈光方案
- GB/Z 43280-2023醫(yī)學實驗室測量不確定度評定指南
- 人音版(五線譜)(北京)音樂一年級上冊小鼓響咚咚課件(共18張PPT內(nèi)嵌音頻)
- ESPEN指南外科手術(shù)中的臨床營養(yǎng)
評論
0/150
提交評論