強化訓練-人教版8年級數(shù)學下冊《平行四邊形》專題訓練試卷(含答案解析)_第1頁
強化訓練-人教版8年級數(shù)學下冊《平行四邊形》專題訓練試卷(含答案解析)_第2頁
強化訓練-人教版8年級數(shù)學下冊《平行四邊形》專題訓練試卷(含答案解析)_第3頁
強化訓練-人教版8年級數(shù)學下冊《平行四邊形》專題訓練試卷(含答案解析)_第4頁
強化訓練-人教版8年級數(shù)學下冊《平行四邊形》專題訓練試卷(含答案解析)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

試卷第=page22頁,共=sectionpages11頁試卷第=page22頁,共=sectionpages22頁人教版8年級數(shù)學下冊《平行四邊形》專題訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.162、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.3、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點,且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o4、如圖所示,公路AC、BC互相垂直,點M為公路AB的中點,為測量湖泊兩側(cè)C、M兩點間的距離,若測得AB的長為6km,則M、C兩點間的距離為()A.2.5km B.4.5km C.5km D.3km5、如圖,在中,,點,分別是,上的點,,,點,,分別是,,的中點,則的長為().A.4 B.10 C.6 D.8第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、正方形ABCD的邊長是8cm,點M在BC邊上,且MC=2cm,P是正方形邊上的一個動點,連接PB交AM于點N,當PB=AM時,PN的長是_____.2、如圖,O為坐標原點,△ABO的兩個頂點A(6,0),B(6,6),點D在邊AB上,點C在邊OA上,且BD=AC=1,點P為邊OB上的動點,則PC+PD的最小值為_____.3、七巧板被西方人稱為“東方魔術”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.4、正方形的一條對角線長為4,則這個正方形面積是_________.5、如圖,點P是矩形ABCD的對角線AC上一點,過點P作EF∥BC,分別交AB,CD于點E、F,連接PB、PD,若AE=2,PF=9,則圖中陰影面積為______;三、解答題(5小題,每小題10分,共計50分)1、已知矩形ABCD,AB=6,BC=10,以BC所在直線為x軸,AB所在直線為y軸,建立如圖所示的平面直角坐標系,在CD邊上取一點E,將△ADE沿AE翻折,點D恰好落在BC邊上的點F處.(1)求線段EF長;(2)在平面內(nèi)找一點G,①使得以A、B、F、G為頂點的四邊形是平行四邊形,請直接寫出點G的坐標;②如圖2,將圖1翻折后的矩形沿y軸正半軸向上平移m(m>0)個單位,若以A、O、F、G為頂點的四邊形為菱形,請求出m的值并寫出點G的坐標.2、如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E,CD=5,DB=13,求BE的長.

3、如圖,在平面直角坐標系中,ΔABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,5).(1)請畫出△ABC關于x軸的對稱圖形ΔA1B1C1;(2)借助網(wǎng)格,利用無刻度直尺畫出線段CD,使CD平分ΔABC的面積.(保留確定點D的痕跡).4、如圖,在平行四邊形中,,..點在上由點向點出發(fā),速度為每秒;點在邊上,同時由點向點運動,速度為每秒.當點運動到點時,點,同時停止運動.連接,設運動時間為秒.(1)當為何值時,四邊形為平行四邊形?(2)設四邊形的面積為,求與之間的函數(shù)關系式.(3)當為何值時,四邊形的面積是四邊形的面積的四分之三?求出此時的度數(shù).(4)連接,是否存在某一時刻,使為等腰三角形?若存在,請求出此刻的值;若不存在,請說明理由.5、如圖:在中,,,點為的中點,點為直線上的動點(不與點,重合),連接,,以為邊在的上方作等邊,連接.(1)是________三角形;(2)如圖1,當點在邊上時,運用(1)中的結(jié)論證明;(3)如圖2,當點在的延長線上時,(2)中的結(jié)論是否依然成立?若成立,請加以證明,若不成立,請說明理由.-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關鍵.2、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.3、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因為∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點睛】考查菱形的邊的性質(zhì),同時綜合利用三角形的內(nèi)角和及等腰三角形的性質(zhì),解題關鍵是利用等腰三角形的性質(zhì)求得∠ADE的度數(shù).4、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M為AB的中點,∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點間的距離為3km,故選:D.【點睛】本題考查了直角三角形的性質(zhì),解題關鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.5、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點P,D分別是AF,AB的中點,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.二、填空題1、5cm或5.2cm【解析】【分析】當點P在BC上,AM>BP,當點P在AB上,AM>BP,當點P在CD上,如圖,根據(jù)PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據(jù)勾股定理可求AM=,根據(jù)三角形面積可求,可求PN=BP-BN;當點P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據(jù)AM=BP=10cm,可求PN=cm,【詳解】解:當點P在BC上,AM>BP,當點P在AB上,AM>BP,不合題意,舍去;當點P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當點P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長為5cm或5.2cm.故答案為5cm或5.2cm.【點睛】本題考查正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想,掌握正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想是解題關鍵.2、6【解析】【分析】過點D作DE⊥AB交y軸于點E,交BO于點P,得矩形ACPD,正方形OCPE,此時PC+PD的值最?。驹斀狻拷猓骸逜(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過點D作DE⊥AB交y軸于點E,交BO于點P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時PC+PD的值最小,為6.故答案為:6.【點睛】本題考查了矩形的判定與性質(zhì),正方形的判定以及垂線段最短問題.3、4【解析】【分析】設陰影小正方形的邊長為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進而得出大正方形的對角線的長度是4xcm,最后求出邊長a即可.【詳解】解:設陰影小正方形的邊長為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長為cm,則大正方形的對角線長為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點睛】本題主要考查七巧板的知識,熟練掌握七巧板各邊的關系是解題的關鍵.4、8【解析】【分析】正方形邊長相等設為,對角線長已知,利用勾股定理求解邊長的平方,即為正方形的面積.【詳解】解:設邊長為,對角線為故答案為:.【點睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關鍵在于求解正方形的邊長.5、【解析】【分析】作PM⊥AD于M,交BC于N,根據(jù)矩形的性質(zhì)可得S△PEB=S△PFD即可求解.【詳解】解:作PM⊥AD于M,交BC于N.則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,,∴,,∴S陰=9+9=18,故答案為:18.【點睛】本題考查矩形的性質(zhì)、三角形的面積等知識,解題的關鍵是證明.三、解答題1、(1)103;(2)①點G的坐標為(﹣8,6)或(8,6)或(8,﹣6);②m=4,G(8,?6)或m=6,G(?8,6).或m=【分析】(1)由矩形的性質(zhì)得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得EF=DE,AF=AD=10,則CE=6﹣EF,由勾股定理求出BF=OF=8,則FC=OC﹣OF=2,在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三種情況,當AB為平行四邊形的對角線時;當AF為平行四邊形的對角線時;當BF為平行四邊形的對角線時,分別求解點G的坐標即可;②分三種情況討論,當OF為對角線時,由菱形的性質(zhì)得OA=AF=10,則矩形ABCD平移距離m=OA﹣AB=4,即OB=4,設FG交x軸于H,證出四邊形OBFH是矩形,得FH=OB=4,OH=BF=8,則HG=6,如圖,當AO為菱形的對角線時,當AF為菱形的對角線時,結(jié)合矩形與菱形的性質(zhì)同理可得出答案.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得:EF=DE,AF=AD=10,∴CE=CD﹣DE=CD﹣EF=6﹣EF,由勾股定理得:BF=OF=A∴FC=OC﹣OF=10﹣8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6﹣EF)2+22,解得:EF=103(2)①如圖所示:當AB為平行四邊形的對角線時,AG=BF=8,AG∥∴點G的坐標為:(﹣8,6);當AF為平行四邊形的對角線時,AG'=BF=8,AG'∥∴點G'的坐標為:(8,6);當BF為平行四邊形的對角線時,F(xiàn)G''=AB=6,F(xiàn)G''∥∴點G''的坐標為:(8,﹣6);綜上所述,點G的坐標為(﹣8,6)或(8,6)或(8,﹣6);②如圖,當OF為菱形的對角線時,∵四邊形AOGF為菱形,∴OA=AF=10,∴矩形ABCD平移距離m=OA﹣AB=10﹣6=4,即OB=4,設FG交x軸于H,如圖所示:∵OA∥FG,∴∠FBO=∠BOH=∠OHF=90°,∴四邊形OBFH是矩形,∴FH=OB=4,OH=BF=8,∴HG=10﹣4=6,∴點G的坐標為:(8,﹣6).如圖,當AO為菱形的對角線時,則AB=OB=6,GB=BF=8,AO⊥GF,∴m=6,G(?8,6).如圖,當AF為菱形的對角線時,同理可得:OA=OF,OA=m+6,且GF∥∴A(0,m+6),F(8,m),∴(m+6)解得:m=7∴A(0,25所以∴G(8,73+綜上:平移距離m與G的坐標分別為:m=4,G(8,?6)或m=6,G(?8,6)或m=7【點睛】本題是四邊形綜合題目,考查了矩形的判定與性質(zhì)、菱形的判定與性質(zhì),坐標與圖形性質(zhì)、平行四邊形的性質(zhì)、勾股定理、折疊變換的性質(zhì)、平移的性質(zhì)等知識;熟練掌握矩形的性質(zhì)和折疊的性質(zhì)是解題的關鍵.2、【分析】由矩形的性質(zhì)可知AB=DC,∠A=∠C=90°,由翻折的性質(zhì)可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依據(jù)AAS可證明△DCE≌△BFE,依據(jù)勾股定理求得BC的長,由全等三角形的性質(zhì)可知BE=DE,最后再△EDC中依據(jù)勾股定理可求得ED的長,從而得到BE的長.【詳解】解:∵四邊形ABCD為矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性質(zhì)可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE與△BEF中,∴△DCE≌△BFE.在Rt△BDC中,由勾股定理得:BC=.∵△DCE≌△BFE,∴BE=DE.設BE=DE=x,則EC=12?x.在Rt△CDE中,CE2+CD2=DE2,即(12?x)2+52=x2.解得:x=.∴BE=.【點睛】本題主要考查的是翻折的性質(zhì)、勾股定理的應用、矩形的性質(zhì),依據(jù)勾股定理列出關于x的方程是解題的關鍵.3、(1)見解析;(2)見解析;【分析】(1)根據(jù)關于軸對稱的點的坐標變化作圖即可;(2)利用格點特征以及矩形對角線互相平分且相等的性質(zhì)取中點從而求解.【詳解】解:(1)如圖所示,ΔA1B1C1即為所求,(2)連接格點,交于點,已知、為矩形的對角線,連接,根據(jù)矩形的性質(zhì)可得點為線段的中點,即為所求.【點睛】本題考查了網(wǎng)格作圖中的軸對稱變換和矩形的性質(zhì),解題的關鍵是掌握并運用相關性質(zhì)進行求解.4、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當t=4或

或時,為等腰三角形,理由見解析.【分析】(1)利用平行四邊形的對邊相等AQ=BP建立方程求解即可;

(2)先構造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;

(3)利用面積關系求出t,即可求出DQ,進而判斷出DQ=PQ,即可得出結(jié)論;

(4)分三種情況,利用等腰三角形的性質(zhì),兩腰相等建立方程求解即可得出結(jié)論.【詳解】解:(1)∵在平行四邊形中,,,由運動知,AQ=16?t,BP=2t,

∵四邊形ABPQ為平行四邊形,

∴AQ=BP,

∴16?t=2t

∴t=,

即:t=s時,四邊形ABPQ是平行四邊形;(2)過點A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,

∴AE=4,

由運動知,BP=2t,DQ=t,

∵四邊形ABCD是平行四邊形,

∴AD=BC=16,

∴AQ=16?t,

∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,

∵BC=16,

∴S四邊形ABCD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論