版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
海南省文昌市中考數(shù)學(xué)綜合提升測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、把四張撲克牌所擺放的順序與位置如下,小楊同學(xué)選取其中一張撲克牌把他顛倒后在放回原來的位置,那么撲克牌的擺放順序與位置都沒變化,那么小楊同學(xué)所選的撲克牌是(
)A. B. C. D.2、下列事件中,是必然事件的是()A.剛到車站,恰好有車進(jìn)站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容D.任意畫一個三角形,其外角和是360°3、二次函數(shù)的頂點坐標(biāo)為,圖象如圖所示,有下列四個結(jié)論:①;②;③④,其中結(jié)論正確的個數(shù)為(
)A.個 B.個 C.個 D.個4、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.45、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當(dāng)點P沿半圓從點A運動至點B時,點M運動的路徑長是(
)A.π B.π C.π D.2二、多選題(5小題,每小題3分,共計15分)1、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點.則以下結(jié)論正確的有(
)A.B.當(dāng)時,y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點D.若線段AB上有且只有5個橫坐標(biāo)為整數(shù)的點,則a的取值范圍是2、已知,⊙的半徑為5,,某條經(jīng)過點的弦的長度為整數(shù),則該弦的長度可能為(
)A.4 B.6 C.8 D.103、已知關(guān)于的方程,下列說法不正確的是(
)A.當(dāng)時,方程無解 B.當(dāng)時,方程有兩個相等的實數(shù)根C.當(dāng)時,方程有兩個相等的實數(shù)根 D.當(dāng)時,方程有兩個不相等的實數(shù)根4、下列命題正確的是(
)A.菱形既是中心對稱圖形又是軸對稱圖形B.的算術(shù)平方根是5C.如果一個多邊形的各個內(nèi)角都等于108°,則這個多邊形是正五邊形D.如果方程有實數(shù)根,則實數(shù)5、如圖,為的直徑延長線上的一點,與相切,切點為,是上一點,連接.已知,則下列結(jié)論正確的為(
)A.與相切 B.四邊形是菱形C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.2、如圖,在中,,,.繞點B順時針方向旋轉(zhuǎn)45°得到,點A經(jīng)過的路徑為弧,點C經(jīng)過的路徑為弧,則圖中陰影部分的面積為______.(結(jié)果保留)3、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.4、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”.當(dāng),時,則陰影部分的面積為__________.5、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關(guān)系是______.四、簡答題(2小題,每小題10分,共計20分)1、如圖,在平面直角坐標(biāo)系中,點為坐標(biāo)原點.拋物線交軸于、兩點,交軸于點,直線經(jīng)過、兩點.(1)求拋物線的解析式;(2)過點作直線軸交拋物線于另一點,過點作軸于點,連接,求的值.2、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點的縱坐標(biāo)是-2,求此時m的值;(2)已知當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,求出這兩個定點的坐標(biāo).五、解答題(4小題,每小題10分,共計40分)1、一張圓桌旁設(shè)有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.2、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達(dá)式,與x之間的函數(shù)表達(dá)式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達(dá)B地這段時間內(nèi),兩人何時相距最近?最近距離是多少?3、新高考“3+1+2”是指:3,語數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學(xué)、生物、地理、政治四科中任選兩科.某同學(xué)確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個游戲:他拿來四張不透明的卡片,正面分別寫著“化學(xué)、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機(jī)抽取兩張,請你用畫樹狀圖(或列表)的方法,求該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率.4、為堅持“五育并舉”,落實立德樹人根本任務(wù),教育部出臺了“五項管理”舉措.我校對九年級部分家長就“五項管理”知曉情況作調(diào)查,A:完全知曉,B:知曉,C:基本知曉,D:不知曉.九年級組長將調(diào)查情況制成了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)圖中信息,回答下列問題:(1)共調(diào)查了多少名家長?寫出圖2中選項所對應(yīng)的圓心角,并補齊條形統(tǒng)計圖;(2)我校九年級共有450名家長,估計九年級“不知曉五項管理”舉措的家長有多少人;(3)已知選項中男女家長數(shù)相同,若從選項家長中隨機(jī)抽取2名家長參加“家校共育”座談會,請用列表或畫樹狀圖的方法,求抽取家長都是男家長的概率.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,圖形是中心對稱圖形即可得出答案.【詳解】由題意可知,圖形是中心對稱圖形,可得答案為D,故選:D.【考點】本題考查了圖形的中心對稱的性質(zhì),掌握中心圖形的性質(zhì)是解題的關(guān)鍵.2、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據(jù)隨機(jī)事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機(jī)事件”判斷選項A、C是隨機(jī)事件,即可得.【詳解】解:A、剛到車站,恰好有車進(jìn)站是隨機(jī)事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容是隨機(jī)事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點睛】本題考查了必然事件,解題的關(guān)鍵是熟記必然事件的概念,不可能事件的概念和隨機(jī)事件的概念.3、A【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)和已知條件,對每一項逐一進(jìn)行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當(dāng)x=2時,y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設(shè)成立,結(jié)合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象,運用所學(xué)知識是解題關(guān)鍵.4、C【分析】先設(shè)半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設(shè)半徑為r,則周長為2πr,120°所對應(yīng)的弧長為解得r=3故選C【點睛】本題考查弧長計算,牢記弧長公式是本題關(guān)鍵.5、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進(jìn)而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以O(shè)C為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M(jìn)為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以O(shè)C為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質(zhì),勾股定理,正方形的判定與性質(zhì),圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關(guān)鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.二、多選題1、ACD【解析】【分析】求得頂點坐標(biāo),根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點,即可判斷③錯誤;根據(jù)題意時,時,即可判斷④正確.【詳解】解:二次函數(shù),頂點為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點,拋物線開口向上,,故①正確;時,隨的增大而增大,故②錯誤;由題意可知當(dāng),二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點,故③正確;線段上有且只有5個橫坐標(biāo)為整數(shù)的點,且對稱軸為直線,∴當(dāng)時,,當(dāng)時,,,解得,故④正確;故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標(biāo)特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.2、CD【解析】【分析】過P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過圓心O,∴AP=BP=4,即AB=4+4=8,∴過P點長度為整數(shù)的弦有4條,①過P點最短的弦的長度是8,②過P點最長的弦的長度是10,③還有兩條弦,長度是9,故答案為:CD.【考點】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關(guān)鍵.3、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關(guān)于的方程,A當(dāng)k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當(dāng)k=1時,-1=0,x=±1,方程有兩個不相等的實數(shù)解,故此選項錯誤,符合題意;C當(dāng)k=-1時,,則,,此時方程有兩個相等的實數(shù)根,故此選項正確,不符合題意;D當(dāng)時,根據(jù)A選項,若k=0,此時方程有一個實數(shù)根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關(guān)鍵.4、AD【解析】【分析】利用菱形的對稱性、算術(shù)平方根的定義、多邊形的內(nèi)角和、一元二次方程根的判別式等知識分別判斷后即可確定正確的選項.【詳解】解:A、菱形既是中心對稱圖形又是軸對稱圖形,故命題正確,符合題意;B、的算術(shù)平方根是,故命題錯誤,不符合題意;C、若一個多邊形的各內(nèi)角都等于108°,各邊也相等,則它是正五邊形,故命題錯誤,不符合題意;D、對于方程,當(dāng)a=0時,方程,變?yōu)?x+1=0,有實數(shù)根,當(dāng)a≠0時,時,即,方程有實數(shù)根,綜上所述,方程有實數(shù)根,則實數(shù),故命題正確,符合題意.故選:AD.【考點】考查了命題與定理的知識,解題的關(guān)鍵是了解算術(shù)平方根的定義、菱形的對稱性、多邊形的內(nèi)角和、一元二次方程根的判別式等知識,難度不大.5、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進(jìn)而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項所求得出:∠CPB=∠BPD,進(jìn)而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進(jìn)而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識,熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵.三、填空題1、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.2、##【分析】設(shè)與AC相交于點D,過點D作,垂足為點E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關(guān)系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結(jié)合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設(shè)與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉(zhuǎn)45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉(zhuǎn)的性質(zhì),等角對等邊的性質(zhì),正切函數(shù),扇形面積等,理解題意,結(jié)合圖形,綜合運用這些知識點是解題關(guān)鍵.3、4【解析】【分析】由A、B坐標(biāo)可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標(biāo),表示出b、c的值是解題的關(guān)鍵.4、【分析】根據(jù)陰影部分面積等于以為直徑的2個半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關(guān)鍵.5、相切或相交【詳解】首先求出方程的根,再利用半徑長度,由點O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當(dāng)半徑為2時,直線l與圓O的的位置關(guān)系是相切,當(dāng)半徑為3時,直線l與圓O的的位置關(guān)系是相交,綜上所述,直線l與圓O的的位置關(guān)系是相切或相交.故答案為:相切或相交.【點睛】本題考查的是直線與圓的位置關(guān)系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關(guān)系完成判定.四、簡答題1、(1);(2)【解析】【分析】(1)首先求出點B、C的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式;(2)如圖,過點C作直線CD⊥y軸交拋物線于點D,過點D作DE⊥x軸于點E,連接BD,構(gòu)造Rt△DEB,欲求銳角三角函數(shù)定義tan∠BDE=,先求線段BE,DE的長度即可.【詳解】(1)解:∵直線經(jīng)過、兩點,易得點,,代入拋物線中,得解之得∴拋物線的解析式為.(2)解:如圖,過點作直線軸交拋物線于點,過點作軸于點,連接.∵拋物線的對稱軸為,點為,∴點為,從而得,.∵點為∴,在中,,∴.【考點】本題考查了拋物線與x軸的交點坐標(biāo),二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì)以及三角函數(shù)等知識點,解題時,注意輔助線的作法.2、(1)-1;(2)(0,-3)與(2,-3).【解析】【分析】(1)根據(jù)拋物線的頂點的縱坐標(biāo)是?2,可以求得m的值;(2)根據(jù)當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,可以求得這兩個定點的坐標(biāo).【詳解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線的頂點的縱坐標(biāo)是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,當(dāng)m=1時,y=x2-2x-3;當(dāng)m=2時,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴這兩個定點為(0,-3)與(2,-3).【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想和二次函數(shù)的性質(zhì)解答.五、解答題1、(1)(2)【分析】(1)根據(jù)概率公式直角計算即可;(2)畫樹狀圖可知共有6種等可能的結(jié)果,而甲與乙相鄰而坐的結(jié)果有4種,最后用概率公式求解即可.(1)解:∵丙坐了一張座位,∴甲坐在①號座位的概率是.故答案是.(2)解:根據(jù)題意畫樹狀圖如圖:共有6種等可能的結(jié)果,甲與乙兩同學(xué)恰好相鄰而坐的結(jié)果有4種,∴甲與乙相鄰而坐的概率為=.【點睛】本題主要考查了概率公式以及運用樹狀圖法求概率,正確畫出樹狀圖是解答本題的關(guān)鍵.2、(1)250;(2)當(dāng)小麗出發(fā)第時,兩人相距最近,最近距離是【解析】【分析】(1)由x=0時,根據(jù)-求得結(jié)果即可;(2)求出兩人相距的函數(shù)表達(dá)式,求出最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)30萬張高端木門、20萬套門套項目環(huán)境影響報告表
- 測振儀使用方法培訓(xùn)課件
- 菌棒購銷合同模板
- 2026 執(zhí)業(yè)藥師備考避坑指南
- 樹人托管老師培訓(xùn)
- 活動策劃執(zhí)行教學(xué)培訓(xùn)
- 2026年通信技術(shù)中知識產(chǎn)權(quán)保護(hù)的實踐與探索試題
- 2026年托福高分必刷題庫及參考答案集
- 2026年建筑工程設(shè)計資質(zhì)考試案例分析與技術(shù)實踐
- 2026年財經(jīng)知識題庫投資理財模擬題
- 婦科微創(chuàng)術(shù)后護(hù)理新進(jìn)展
- 工藝類美術(shù)課件
- 2025年小學(xué)蔬菜頒獎典禮
- MFC2000-6微機(jī)廠用電快速切換裝置說明書
- TCNAS50-2025成人吞咽障礙患者口服給藥護(hù)理學(xué)習(xí)解讀課件
- 專升本演講稿
- 2024低溫低濁水給水處理設(shè)計標(biāo)準(zhǔn)
- 門窗知識文字培訓(xùn)課件
- 《房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)》解讀
- 2025年國資委公務(wù)員面試熱點問題集錦及答案
- 計算機(jī)系大數(shù)據(jù)畢業(yè)論文
評論
0/150
提交評論