重難點解析人教版8年級數(shù)學(xué)上冊《軸對稱》定向測試練習(xí)題(含答案詳解)_第1頁
重難點解析人教版8年級數(shù)學(xué)上冊《軸對稱》定向測試練習(xí)題(含答案詳解)_第2頁
重難點解析人教版8年級數(shù)學(xué)上冊《軸對稱》定向測試練習(xí)題(含答案詳解)_第3頁
重難點解析人教版8年級數(shù)學(xué)上冊《軸對稱》定向測試練習(xí)題(含答案詳解)_第4頁
重難點解析人教版8年級數(shù)學(xué)上冊《軸對稱》定向測試練習(xí)題(含答案詳解)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、下列三角形中,等腰三角形的個數(shù)是(

A.4個 B.3個 C.2個 D.1個2、如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是(

)A. B.C. D.3、如圖,△ABC和△ECD都是等腰直角三角形,△ABC的頂點A在△ECD的斜邊DE上.下列結(jié)論:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正確的有()A.1個 B.2個 C.3個 D.4個4、如圖,直線,等邊三角形的頂點、分別在直線和上,邊與直線所夾的銳角為,則的度數(shù)為(

)A. B. C. D.5、以下四個標(biāo)志,每個標(biāo)志都有圖案和文字說明,其中的圖案是軸對稱圖形是(

)A. B.C. D.6、如圖,在的正方形網(wǎng)格中有兩個格點A、B,連接,在網(wǎng)格中再找一個格點C,使得是等腰直角三角形,滿足條件的格點C的個數(shù)是(

)A.2 B.3 C.4 D.57、在平面直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)為(

)A. B. C. D.8、如圖,已知鈍角△ABC,依下列步驟尺規(guī)作圖,并保留作圖痕跡.步驟1∶以C為圓心,CA為半徑畫?、?;步驟2∶以B為圓心,BA為半徑畫?、?,交弧①于點D;步驟3∶連接AD,交BC延長線于點H.下列敘述正確的是(

)A.BH垂直平分線段AD B.AC平分∠BADC.S△ABC=BC?AH D.AB=AD9、如圖,是由大小一樣的小正方形組成的網(wǎng)格,△ABC的三個頂點均落在小正方形的頂點上.在網(wǎng)格上能畫出的三個頂點都落在小正方形的頂點上,且與△ABC成軸對稱的三角形共有(

)A.5個 B.4個 C.3個 D.2個10、在中,,,,則的長度為(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖已知OA=a,P是射線ON上一動點,∠AON=60°,當(dāng)OP=________

時,△AOP為等邊三角形.2、如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊ABC和等邊CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.則下列結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的有________.(填序號)3、如圖,在△ABC中,DE是BC的垂直平分線,垂足為E,交AC于點D,若AB=6,AC=9,則△ABD的周長是__.4、如圖,點與點關(guān)于直線對稱,則______.5、如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC=_______°.6、等腰三角形的頂角與其一個底角的度數(shù)的比值稱為這個等腰三角形的“特征值”﹒若等腰中,,則它的特征值_________________.7、如圖,已知AD是△ABC的中線,E是AC上的一點,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,則∠ACB=_____.8、如圖,平分,,的延長線交于點,若,則的度數(shù)為__________.9、在△ABC中,∠ACB=90°,∠A=40°,D為AB邊上一點,若△ACD是等腰三角形,則∠BCD的度數(shù)為_____.10、如圖,已知△ABC≌△ADE,且點B與點D對應(yīng),點C與點E對應(yīng),點D在BC上,∠BAE=114°,∠BAD=40°,則∠E的度數(shù)是______°.三、解答題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,∠B=75°,AD⊥BC,∠C=∠CAD,求∠C,∠BAC的度數(shù).2、如圖,在四邊形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的長.3、兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,,,,,,在同一條直線上,連結(jié).求的度數(shù).4、如圖,是邊長為2的等邊三角形,是頂角為120°的等腰三角形,以點為頂點作,點、分別在、上.(1)如圖①,當(dāng)時,則的周長為______;(2)如圖②,求證:.5、如圖,在四邊形ABCD中,,∠BAD=90°,點E在AC上,EC=ED=DA.求∠CAB的度數(shù).-參考答案-一、單選題1、B【解析】【分析】根據(jù)題圖所給信息,根據(jù)邊或角分析即可【詳解】解:第一個圖形中有兩邊相等,故第一個三角形是等腰三角形,第二個圖形中的三個角分別為50°,35°,95°,故第二個三角形不是等腰三角形;第三個圖形中的三個角分別為100°,40°,40°,故第三個三角形是等腰三角形;第四個圖形中的三個角分別為90°,45°,45°,故第四個三角形是等腰三角形;故答案為:B.【考點】本題考查了等腰三角形的判定,掌握等腰三角形的判定是解題的關(guān)鍵.2、B【解析】【詳解】解:∵PB+PC=BC,PA+PC=BC,∴PA=PB,根據(jù)線段垂直平分線定理的逆定理可得,點P在線段AB的垂直平分線上,故可判斷B選項正確.故選B.3、C【解析】【分析】根據(jù)等腰直角三角形的性質(zhì)得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,則可根據(jù)“SAS”證明△ACE≌△BCD,于是可對①進行判斷;利用三角形外角性質(zhì)得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,則可得對②進行判斷;利用CE=CD和三角形三邊之間的關(guān)系可對③進行判斷;根據(jù)△ACE≌△BCD得到∠BDC=∠E=45°,則可對④進行判斷.【詳解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正確;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正確;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③錯誤;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB為直角三角形,所以④正確.故選:C.【考點】本題是考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),直角三角形的判定與性質(zhì)等知識,熟練掌握全等三角形的判定與性質(zhì)和等腰直角三角形的性質(zhì)是解題的關(guān)鍵.4、C【解析】【分析】根據(jù),可以得到,,再根據(jù)等邊三角形可以計算出的度數(shù).【詳解】解:如圖所示:根據(jù)∴,又∵是等邊三角形∴∴∴故選:C.【考點】本題主要考查了平行線的性質(zhì),即兩直線平行內(nèi)錯角相等以及兩直線平行同位角相等;明確平行線的性質(zhì)是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)軸對稱圖形的定義判斷即可【詳解】∵A,B,C都不是軸對稱圖形,∴都不符合題意;D是軸對稱圖形,符合題意,故選D.【考點】本題考查了軸對稱圖形的定義,準(zhǔn)確理解軸對稱圖形的定義是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰直角△ABC底邊;②AB為等腰直角△ABC其中的一條腰.【詳解】解:如圖:分情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有0個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有3個.故共有3個點,故選:B.【考點】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實際條件的圖形,數(shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.7、D【解析】【分析】利用關(guān)于x軸對稱的點坐標(biāo)特征:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)解答即可.【詳解】點關(guān)于軸對稱的點的坐標(biāo)為(3,-2),故選:D.【考點】本題主要考查了關(guān)于坐標(biāo)軸對稱的點的坐標(biāo)特征,熟練掌握關(guān)于坐標(biāo)軸對稱的點的坐標(biāo)特征是解答的關(guān)鍵.8、A【解析】【詳解】解:A.如圖連接CD、BD,∵CA=CD,BA=BD,∴點C、點B在線段AD的垂直平分線上,∴直線BC是線段AD的垂直平分線,故A正確,符合題意;B.CA不一定平分∠BDA,故B錯誤,不符合題意;C.應(yīng)該是S△ABC=?BC?AH,故C錯誤,不符合題意;D.根據(jù)條件AB不一定等于AD,故D錯誤,不符合題意.故選A.9、A【解析】【分析】認(rèn)真讀題,觀察圖形,根據(jù)圖形特點先確定對稱軸,再根據(jù)對稱軸找出相應(yīng)的三角形.【詳解】解:如圖:與△ABC成軸對稱的三角形有:①△FCD關(guān)于CG對稱;②△GAB關(guān)于EH對稱;③△AHF關(guān)于AD對稱;④△EBD關(guān)于BF對稱;⑤△BCG關(guān)于AG的垂直平分線對稱.共5個.故選A.【考點】本題考查軸對稱的基本性質(zhì),結(jié)合了圖形的常見的變化,要根據(jù)直角三角形的特點從圖中找到有關(guān)的直角三角形再判斷是否為對稱圖形.10、C【解析】【分析】根據(jù)直角三角形的性質(zhì)30°所對的直角邊等于斜邊的一半求解即可.【詳解】∵在Rt△ABC中,,,∴,∴∵,∴3BC=12cm.∴BC=4cm∴AB=8cm故選:C【考點】本題考查了含30度角的直角三角形的性質(zhì),掌握含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.二、填空題1、a【解析】【分析】根據(jù)“有一內(nèi)角為60度的等腰三角形是等邊三角形”進行解答.【詳解】∵∠AON=60°,∴當(dāng)OA=OP=a時,△AOP為等邊三角形.故答案是:a.【考點】本題考查了等邊三角形的判定.等邊三角形的判定方法:(1)由定義判定:三條邊都相等的三角形是等邊三角形.(2)判定定理1:三個角都相等的三角形是等邊三角形.(3)判定定理2:有一個角是60°的等腰三角形是等邊三角形.2、①②③【解析】【分析】根據(jù)等邊三角形的三邊都相等,三個角都是60°,可以證明ACD與BCE全等,根據(jù)全等三角形對應(yīng)邊相等可得AD=BE,所以①正確,對應(yīng)角相等可得∠CAD=∠CBE,然后證明ACP與BCQ全等,根據(jù)全等三角形對應(yīng)邊相等可得PC=PQ,從而得到CPQ是等邊三角形,再根據(jù)等腰三角形的性質(zhì)可以找出相等的角,從而證明PQ∥AE,所以②正確;根據(jù)全等三角形對應(yīng)邊相等可以推出AP=BQ,所以③正確,根據(jù)③可推出DP=EQ,再根據(jù)DEQ的角度關(guān)系DE≠DP.【詳解】解:∵等邊ABC和等邊CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在ACD與BCE中,,∴ACD≌BCE(SAS),∴AD=BE,故①小題正確;∵ACD≌BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在ACP與BCQ中,,∴ACP≌BCQ(ASA),∴AP=BQ,故③小題正確;PC=QC,∴PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小題正確;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小題錯誤.綜上所述,正確的是①②③.故答案為:①②③.【考點】本題考查了等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),以及平行線的判定,需要多次證明三角形全等,綜合性較強,但難度不是很大,是熱點題目,仔細(xì)分析圖形是解題的關(guān)鍵.3、15【解析】【分析】根據(jù)線段的垂直平分線的性質(zhì)得到DB=DC,根據(jù)三角形的周長公式計算即可.【詳解】解:∵DE是BC的垂直平分線,∴DB=DC,∴△ABD的周長=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案為15.【考點】本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關(guān)鍵.4、-5【解析】【分析】根據(jù)點與點關(guān)于直線對稱求得a,b的值,最后代入求解即可.【詳解】解:∵點與點關(guān)于直線對稱∴a=-2,,解得b=-3∴a+b=-2+(-3)=-5故答案為-5.【考點】本題考查了關(guān)于y=-1對稱點的性質(zhì),根據(jù)對稱點的性質(zhì)求得a、b的值是解答本題的關(guān)鍵.5、45【解析】【詳解】解:∵DE垂直平分AB,∴AE=BE.∵BE⊥AC,∴△ABE是等腰直角三角形.∴∠BAC=∠ABE=45°.又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°.∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°.∵AB=AC,AF⊥BC,∴BF=CF又∵BE⊥AC∴EF=BF.∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°故答案為:45.6、或【解析】【分析】分∠A為頂角及∠A為底角兩種情況考慮,當(dāng)∠A為頂角時,利用三角形內(nèi)角和定理可求出底角的度數(shù),結(jié)合“特征值”的定義即可求出特征值k的值;當(dāng)∠A為底角時,利用三角形內(nèi)角和定理可求出頂角的度數(shù),結(jié)合“特征值”的定義即可求出特征值k的值.【詳解】當(dāng)為頂角時,則底角度數(shù)為,則;當(dāng)為底角時,則頂角度數(shù)為,;故答案為:或.【考點】本題考查了等腰三角形的性質(zhì)及三角形內(nèi)角和定理,分∠A為頂角及∠A為底角兩種情況求出“特征值”k是解題的關(guān)鍵.7、100°##100度【解析】【分析】延長AD到M,使得DM=AD,連接BM,證△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再證△BFM是等腰三角形,求出∠MBF的度數(shù),即可解決問題.【詳解】解:如圖,延長AD到M,使得DM=AD,連接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案為:100°.【考點】本題考查全等三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.8、【解析】【分析】如圖,連接,延長與交于點利用等腰三角形的三線合一證明是的垂直平分線,從而得到再次利用等腰三角形的性質(zhì)得到:從而可得答案.【詳解】解:如圖,連接,延長與交于點平分,,是的垂直平分線,故答案為:【考點】本題考查的是等腰三角形的性質(zhì),掌握等腰三角形的三線合一是解題的關(guān)鍵.9、20°或50°【解析】【分析】分以下兩種情況求解:①當(dāng)AC=AD時,②當(dāng)CD=AD時,先求出∠ACD的度數(shù),然后即可得出∠BCD的度數(shù)【詳解】解:①如圖1,當(dāng)AC=AD時,∴∠ACD=∠ADC=(180°﹣40°)=70°,∴∠BCD=90°﹣∠ACD=20°;②如圖2,當(dāng)CD=AD時,∠ACD=∠A=40°,∴∠BCD=90°﹣∠ACD=50°,綜上可知∠BCD的度數(shù)為20°或50°,故答案為:20°或50°.【考點】本題考查了等腰三角形的性質(zhì)以及三角形的內(nèi)角和,解題的關(guān)鍵是根據(jù)題意畫出圖形,并運用分類討論的思想求解.10、36【解析】【分析】根據(jù)全等三角形的性質(zhì)得出AB=AD,∠ABD=∠ADE,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ABD=70°,求出∠DAE和∠ADE,再根據(jù)三角形內(nèi)角和定理求出∠E即可.【詳解】解:∵△ABC≌△ADE,∴AB=AD,∴∠ABD=∠ADB,∵∠BAD=40°,∴∠ABD=∠ADB=(180°-∠BAD)=70°,∵△ABC≌△ADE,∴∠ADE=∠ABD=70°,∵∠BAE=114°,∠BAD=40°,∴∠DAE=∠BAE-∠BAD=114°-40°=74°,∴∠E=180°-∠ADE-∠DAE=180°-70°-74°=36°,故答案為:36.【考點】本題考查了全等三角形的性質(zhì),等腰三角形的性質(zhì),三角形內(nèi)角和定理等知識點,能熟記全等三角形的對應(yīng)邊相等和全等三角形的對應(yīng)角相等是解此題的關(guān)鍵.三、解答題1、∠C=45°;∠BAC=60°.【解析】【分析】在Rt△ACD中,利用兩銳角互余以及等腰三角形的性質(zhì)求得∠C=45°,在△ABC中,利用三角形內(nèi)角和定理即可求得∠BAC=60°.【詳解】解:∵AD⊥BC,∴∠ADC=90°,∴在Rt△ACD中,∠CAD+∠C=90°,∵∠C=∠CAD,∴∠C=∠CAD=45°,∵在△ABC中,∠B=75°,∴∠BAC=180°?∠B?∠C=180°?75°?45°=60°.【考點】本題考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理,熟記各圖形的性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.2、AB=2-2,CD=4-.【解析】【分析】此題為幾何題,看題目只是一個四邊形,要求兩條未知邊,那肯定要添輔助線.過點D作DH⊥BA延長線于H,作DM⊥BC于M.構(gòu)建矩形HBMD.利用矩形的性質(zhì)和解直角三角形來求AB、CD的長度.【詳解】如圖,過點D作DH⊥BA延長線于H,作DM⊥BC于點M.∵∠B=90°,∴四邊形HBMD是矩形.∴HD=BM,BH=MD,∠ABM=∠ADC=90°,又∵∠C=60°,∴∠ADH=∠MDC=30°,∴在Rt△AHD中,AD=1,∠ADH=30°,則AH=AD=,DH=.∴MC=BC-BM=BC-DH=2-=.∴在Rt△CMD中,CD=2MC=4-,DM=CD=.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論