版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版9年級數(shù)學(xué)上冊《圓》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、一個商標(biāo)圖案如圖中陰影部分,在長方形中,,,以點(diǎn)為圓心,為半徑作圓與的延長線相交于點(diǎn),則商標(biāo)圖案的面積是(
)A. B.C. D.2、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(
)A. B. C. D.3、已知點(diǎn)在半徑為8的外,則(
)A. B. C. D.4、如圖,是的弦,點(diǎn)在過點(diǎn)的切線上,,交于點(diǎn).若,則的度數(shù)等于(
)A. B. C. D.5、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m6、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(
)A. B. C. D.7、如圖,、為⊙O的切線,切點(diǎn)分別為A、B,交于點(diǎn)C,的延長線交⊙O于點(diǎn)D.下列結(jié)論不一定成立的是(
)A.為等腰三角形 B.與相互垂直平分C.點(diǎn)A、B都在以為直徑的圓上 D.為的邊上的中線8、如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°9、如圖,、分別切于點(diǎn)、,點(diǎn)為優(yōu)弧上一點(diǎn),若,則的度數(shù)為(
)A. B. C. D.10、下列多邊形中,內(nèi)角和最大的是(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、數(shù)學(xué)課上,老師讓學(xué)生用尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認(rèn)為小明這種作法中判斷∠ACB是直角的依據(jù)是_____.2、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點(diǎn)A處繞圓錐側(cè)面一周又回到點(diǎn)A處,則小蟲所走的最短路程為___________(結(jié)果保留根號)3、如圖,是的直徑,弦于點(diǎn),且,則的半徑為__________.4、如圖,在中,的半徑為點(diǎn)是邊上的動點(diǎn),過點(diǎn)作的一條切線(其中點(diǎn)為切點(diǎn)),則線段長度的最小值為____.5、如圖,PA、PB切⊙O于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠P=∠C,則∠AOB=_______.6、已知在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為是拋物線對稱軸上的一個動點(diǎn).小明經(jīng)探究發(fā)現(xiàn):當(dāng)?shù)闹荡_定時,拋物線的對稱軸上能使為直角三角形的點(diǎn)的個數(shù)也隨之確定.若拋物線的對稱軸上存在3個不同的點(diǎn),使為直角三角形,則的值是____.7、如圖,在一邊長為的正六邊形中,分別以點(diǎn)A,D為圓心,長為半徑,作扇形,扇形,則圖中陰影部分的面積為___________.(結(jié)果保留)8、一個扇形的弧長是,面積是,則這個扇形的圓心角是___度.9、已知圓錐的高為4cm,母線長為5cm,則圓錐的側(cè)面積為_____cm2.10、如圖,,,以為直徑作半圓,圓心為點(diǎn);以點(diǎn)為圓心,為半徑作,過點(diǎn)作的平行線交兩弧于點(diǎn)、,則陰影部分的面積是________.三、解答題(5小題,每小題6分,共計30分)1、已知:如圖,圓O是△ABC的外接圓,AO平分∠BAC.(1)求證:△ABC是等腰三角形;(2)當(dāng)OA=4,AB=6,求邊BC的長.2、如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點(diǎn)C作CE⊥AD交AD的延長線于點(diǎn)E,延長EC,AB交于點(diǎn)F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.3、如圖,為的直徑,C為上一點(diǎn),弦的延長線與過點(diǎn)C的切線互相垂直,垂足為D,,連接.(1)求的度數(shù);(2)若,求的長.4、如圖,半徑為6的⊙O與Rt△ABC的邊AB相切于點(diǎn)A,交邊BC于點(diǎn)C,D,∠B=90°,連接OD,AD.(1)若∠ACB=20°,求的長(結(jié)果保留).(2)求證:AD平分∠BDO.5、如下圖是一個隧道的橫截面,它的形狀是以點(diǎn)O為圓心的圓的一部分.如果M是中弦的中點(diǎn),經(jīng)過圓心O交圓O于點(diǎn)E,并且.求的半徑.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進(jìn)行計算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點(diǎn)】本題主要考查扇形的面積計算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.2、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個內(nèi)角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點(diǎn)】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算,掌握圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算是解題關(guān)鍵.3、A【解析】【分析】根據(jù)點(diǎn)P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點(diǎn)P在圓O的外部,∴點(diǎn)P到圓心O的距離大于8,故選:A.【考點(diǎn)】本題主要考查點(diǎn)與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點(diǎn)與圓的位置關(guān)系的方法.4、B【解析】【分析】根據(jù)題意可求出∠APO、∠A的度數(shù),進(jìn)一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點(diǎn)C在過點(diǎn)B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點(diǎn)】本題考查的是圓切線的運(yùn)用,熟練掌握運(yùn)算方法是關(guān)鍵.5、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點(diǎn)】本題考查了垂徑定理和勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識點(diǎn),能求出CE=DE是解此題的關(guān)鍵.7、B【解析】【分析】連接OB,OC,令M為OP中點(diǎn),連接MA,MB,證明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出為等腰三角形,可判斷A;根據(jù)△OBP與△OAP為直角三角形,OP為斜邊,可得PM=OM=BM=AM,可判斷C;證明△OBC≌△OAC,可得PC⊥AB,根據(jù)△BPA為等腰三角形,可判斷D;無法證明與相互垂直平分,即可得出答案.【詳解】解:連接OB,OC,令M為OP中點(diǎn),連接MA,MB,∵B,C為切點(diǎn),∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴為等腰三角形,故A正確;∵△OBP與△OAP為直角三角形,OP為斜邊,∴PM=OM=BM=AM∴點(diǎn)A、B都在以為直徑的圓上,故C正確;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA為等腰三角形,∴為的邊上的中線,故D正確;無法證明與相互垂直平分,故選:B.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),圓的性質(zhì),掌握知識點(diǎn)靈活運(yùn)用是解題關(guān)鍵.8、C【解析】【分析】由點(diǎn)I是△ABC的內(nèi)心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內(nèi)接四邊形的外角等于內(nèi)對角可得答案.【詳解】解:∵點(diǎn)I是△ABC的內(nèi)心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內(nèi)接于⊙O,∴∠CDE=∠B=68°,故選:C.【考點(diǎn)】本題主要考查三角形的內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是掌握三角形的內(nèi)心的性質(zhì)及圓內(nèi)接四邊形的性質(zhì).9、C【解析】【分析】要求∠ACB的度數(shù),只需根據(jù)圓周角定理構(gòu)造它所對的弧所對的圓心角,即連接OA,OB;再根據(jù)切線的性質(zhì)以及四邊形的內(nèi)角和定理即可求解.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點(diǎn)A、B,∴OA⊥AP,OB⊥BP,∴∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠AOB=2∠ACB,∠ACB=∠APB,∴3∠ACB=180°,∴∠ACB=60°,故選:C.【考點(diǎn)】此題考查了切線的性質(zhì),圓周角定理,以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.10、D【解析】【分析】根據(jù)多邊形內(nèi)角和公式可直接進(jìn)行排除選項(xiàng).【詳解】解:A、是一個三角形,其內(nèi)角和為180°;B、是一個四邊形,其內(nèi)角和為360°;C、是一個五邊形,其內(nèi)角和為540°;D、是一個六邊形,其內(nèi)角和為720°;∴內(nèi)角和最大的是六邊形;故選D.【考點(diǎn)】本題主要考查多邊形內(nèi)角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.二、填空題1、直徑所對的圓周角是直角【解析】【分析】根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:根據(jù)“直徑所對的圓周角是直角”得出.故答案為直徑所對的圓周角是直角.【考點(diǎn)】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.2、6【解析】【分析】利用圓錐的底面周長等于側(cè)面展開圖的弧長可得圓錐側(cè)面展開圖的圓心角,求出側(cè)面展開圖中兩點(diǎn)間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設(shè)圓錐的側(cè)面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點(diǎn)】本題考查了圓錐的計算,考查圓錐側(cè)面展開圖中兩點(diǎn)間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來求是解決本題的突破點(diǎn).3、【解析】【分析】根據(jù)垂徑定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可.【詳解】解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE-OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32+(6-OD)2,解得:OD=,∴⊙O的半徑為:,故答案為:.【考點(diǎn)】本題考查了垂徑定理、勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.4、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當(dāng)OP⊥AB時,PQ最短;在中運(yùn)用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長,然后再運(yùn)用等面積法求得OP的長,最后運(yùn)用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當(dāng)OP⊥AB時,如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點(diǎn)】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識點(diǎn),此正確作出輔助線、根據(jù)勾股定理確定當(dāng)PO⊥AB時、線段PQ最短是解答本題的關(guān)鍵.5、120°【解析】【分析】根據(jù)圓周角定理得到∠C=∠AOB,根據(jù)切線的性質(zhì)得到∠PAO=∠PBO=90°,進(jìn)而得出∠P+∠AOB=180°,根據(jù)題意計算,得到答案.【詳解】解:由圓周角定理得:∠C=∠AOB,∵PA、PB切⊙O于A、B兩點(diǎn),∴∠PAO=∠PBO=90°,∴∠P+∠AOB=180°,∵∠P=∠C,∴∠AOB+∠AOB=180°,∴∠AOB=120°,故答案為:120°.【考點(diǎn)】本題考查切線的性質(zhì)以及圓周角定理,熟記由切線得垂直是解題的關(guān)鍵.6、2或【解析】【分析】分,和確定點(diǎn)M的運(yùn)動范圍,結(jié)合拋物線的對稱軸與,,共有三個不同的交點(diǎn),確定對稱軸的位置即可得出結(jié)論.【詳解】解:由題意得:O(0,0),A(3,4)∵為直角三角形,則有:①當(dāng)時,∴點(diǎn)M在與OA垂直的直線上運(yùn)動(不含點(diǎn)O);如圖,②當(dāng)時,,∴點(diǎn)M在與OA垂直的直線上運(yùn)動(不含點(diǎn)A);③當(dāng)時,,∴點(diǎn)M在與OA為直徑的圓上運(yùn)動,圓心為點(diǎn)P,∴點(diǎn)P為OA的中點(diǎn),∴∴半徑r=∵拋物線的對稱軸與x軸垂直由題意得,拋物線的對稱軸與,,共有三個不同的交點(diǎn),∴拋物線的對稱軸為的兩條切線,而點(diǎn)P到切線,的距離,又∴直線的解析式為:;直線的解析式為:;∴或4∴或-8故答案為:2或-8【考點(diǎn)】本題是二次函數(shù)的綜合題型,其中涉及到的知識點(diǎn)有圓的切線的判定,直角三角形的判定,綜合性較強(qiáng),有一定難度.運(yùn)用數(shù)形結(jié)合、分類討論是解題的關(guān)鍵.7、【解析】【分析】先利用正多邊形內(nèi)角和公式求得每個內(nèi)角,再利用扇形面積公式求出扇形ABF、扇形DCE的面積,即可得出結(jié)果.【詳解】由正多邊形每個內(nèi)角公式可得該正六邊形的每一個內(nèi)角;∵,;則陰影部分面積為:.【考點(diǎn)】本題考查了正多邊形和圓、扇形面積計算等知識;掌握正多邊形內(nèi)角的計算公式和扇形面積公式是解題的關(guān)鍵.8、150【解析】【分析】根據(jù)弧長公式計算.【詳解】根據(jù)扇形的面積公式可得:,解得r=24cm,再根據(jù)弧長公式,解得.故答案為:150.【考點(diǎn)】本題考查了弧長的計算及扇形面積的計算,要記熟公式:扇形的面積公式,弧長公式.9、15π【解析】【分析】首先利用勾股定理求得圓錐的底面半徑,然后利用圓錐的側(cè)面積=π×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.【詳解】解:根據(jù)題意,圓錐的底面圓的半徑==3(cm),所以圓錐的側(cè)面積=π×3×5=15π(cm2).故答案為:15π.【考點(diǎn)】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長,圓錐的側(cè)面積等于“π×底面半徑×母線長”.10、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進(jìn)行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點(diǎn)】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.三、解答題1、(1)見解析;(2)3【解析】【分析】(1)連接OB、OC,先證明∠OBA=∠OCA=∠BAO=∠CAO,再證明△OAB≌△OAC得AB=AC,問題得證;(2)延長AO交BC于點(diǎn)H,先證明AH⊥BC,BH=CH,設(shè)OH=b,BH=CH=a,根據(jù)OA=4,AB=6,由勾股定理列出a、b的方程組,解得a、b,便可得BC.【詳解】解:(1)連接OB、OC,∵OA=OB=OC,OA平分∠BAC,∴∠OBA=∠OCA=∠BAO=∠CAO,在△OAB和△OAC中,,∴△OAB≌△OAC(AAS),∴AB=AC即△ABC是等腰三角形;(2)延長AO交BC于點(diǎn)H,∵AH平分∠BAC,AB=AC,∴AH⊥BC,BH=CH,設(shè)OH=b,BH=CH=a,∵BH2+OH2=OB2,OA=4,AB=6,則①BH2+AH2=AB2,OA=4,AB=6,則②②-①得:把代入①得:(舍)∴BC=2a=3.【考點(diǎn)】本題考查了三角形的全等,等腰三角形的性質(zhì),圓的基本性質(zhì),勾股定理,方程組的思想,掌握以上知識是解題的關(guān)鍵.2、(1)見解析;(2)⊙O的半徑是4.5【解析】【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內(nèi)接于⊙O,得,再根據(jù)等量代換和直角三角形的性質(zhì)可得,由切線的判定可得結(jié)論;(2)如圖2,過點(diǎn)O作于G,連接OC,OD,則,先根據(jù)三個角是直角的四邊形是矩形得四邊形OGEC是矩形,設(shè)⊙O的半徑為x,根據(jù)勾股定理列方程可得結(jié)論.【詳解】(1)證明:如圖1,連接OC,∵,∴,∵四邊形ABCD內(nèi)接于⊙O,∴又∴,∵,∴,∵,∴,∴,∵OC是⊙O的半徑,∴CE為⊙O的切線;(2)解:如圖2,過點(diǎn)O作于G,連接OC,OD,則,∵,∴四邊形OGEC是矩形,∴,設(shè)⊙O的半徑為x,Rt△CDE中,,∴,∴,,由勾股定理得,∴,解得:,∴⊙O的半徑是4.5.【考點(diǎn)】本題考查的是圓的綜合,涉及到圓的切線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫(yī)院衛(wèi)生院應(yīng)急疏散預(yù)案
- 2025年品牌推廣經(jīng)理推廣方案試卷及答案解析
- 景區(qū)游客踩踏事件應(yīng)急處置及管理制度內(nèi)容
- 金融詐騙事件應(yīng)急處置及管理制度內(nèi)容
- 街道消防安全隱患大排查大整治工作方案
- 金融數(shù)據(jù)驅(qū)動的智能決策支持系統(tǒng)
- 高效團(tuán)隊建設(shè)與員工激勵策略分析
- 生鮮超市庫存管理流程規(guī)范
- 投標(biāo)報價寫作標(biāo)準(zhǔn)模板及范例
- 互聯(lián)網(wǎng)公司新員工入職培訓(xùn)手冊
- 博物館講解員禮儀培訓(xùn)
- 生豬屠宰溯源信息化管理系統(tǒng)建設(shè)方案書
- 漁民出海前安全培訓(xùn)課件
- 危貨押運(yùn)證安全培訓(xùn)內(nèi)容課件
- 湖南雅禮高一數(shù)學(xué)試卷
- CNAS-GC25-2023 服務(wù)認(rèn)證機(jī)構(gòu)認(rèn)證業(yè)務(wù)范圍及能力管理實(shí)施指南
- 入伍智力測試題及答案
- 竣工驗(yàn)收方案模板
- 企業(yè)安全生產(chǎn)內(nèi)業(yè)資料全套范本
- 安全生產(chǎn)標(biāo)準(zhǔn)化與安全文化建設(shè)的關(guān)系
- DL-T5054-2016火力發(fā)電廠汽水管道設(shè)計規(guī)范
評論
0/150
提交評論