重難點解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測評試題(解析版)_第1頁
重難點解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測評試題(解析版)_第2頁
重難點解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測評試題(解析版)_第3頁
重難點解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測評試題(解析版)_第4頁
重難點解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測評試題(解析版)_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等邊三角形 B.直角三角形 C.正五邊形 D.矩形2、圖,在中,,將繞頂點順時針旋轉(zhuǎn)到,當(dāng)首次經(jīng)過頂點時,旋轉(zhuǎn)角(

)A.30° B.40° C.45° D.60°3、下列圖形中,是中心對稱圖形的是()A. B.C. D.4、如圖,中,,,若將繞點逆時針旋轉(zhuǎn)得到,連接,則在點運動過程中,線段的最小值為(

)A.1 B. C. D.25、2022年新年賀詞中提到“人不負(fù)青山,青山定不負(fù)人”,下列四個有關(guān)環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(

)A. B. C. D.6、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是(

)A. B.1 C.2 D.7、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.8、如圖,已知正方形的邊長為4,以點C為圓心,2為半徑作圓,P是上的任意一點,將點P繞點D按逆時針方向旋轉(zhuǎn),得到點Q,連接,則的最大值是(

)A.6 B. C. D.9、把圖中的交通標(biāo)志圖案繞著它的中心旋轉(zhuǎn)一定角度后與自身重合,則這個旋轉(zhuǎn)角度至少為(

)A.30° B.90° C.120° D.180°10、如圖所示,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A按順時針方向旋轉(zhuǎn)90°后得到△AFB,連接EF,有下列結(jié)論:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正確的有()A.①②③④ B.②③ C.②③④ D.③④第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、在平面直角坐標(biāo)系中,點(﹣3,2)關(guān)于原點對稱的點的坐標(biāo)是____________.2、已知,正六邊形ABCDEF在直角坐標(biāo)系內(nèi)的位置如圖所示,A(﹣2,0),點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2022次翻轉(zhuǎn)之后,點B的坐標(biāo)是______.3、如圖,正比例函數(shù)y=kx(k≠0)的圖像經(jīng)過點A(2,4),AB⊥x軸于點B,將△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,則直線AC的函數(shù)表達(dá)式為_____.4、如圖,在中,,,,將繞點按逆時針方向旋轉(zhuǎn)得到,連接,,直線,相交于點,連接,在旋轉(zhuǎn)過程中,線段的最大值為__________.5、如圖,菱形的邊長為,,邊在軸上,若將菱形繞點逆時針旋轉(zhuǎn)75°,得到菱形,則點的對應(yīng)點的坐標(biāo)為______.6、如圖,在平面直角坐標(biāo)系中,,由繞點順時針旋轉(zhuǎn)而得,則所在直線的解析式是___.7、若點與關(guān)于原點對稱,則__.8、如圖,在正方形網(wǎng)格中,格點繞某點順時針旋轉(zhuǎn)角得到格點,點與點,點與點,點與點是對應(yīng)點,則_____度.9、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應(yīng)點為點Q,連接AQ,DQ.當(dāng)∠ADQ=90°時,AQ的長為______.10、在中,頂點,,.將與正方形組成的圖形繞點逆時針旋轉(zhuǎn),每次旋轉(zhuǎn),則第2022次旋轉(zhuǎn)結(jié)束時,點的坐標(biāo)是________.三、解答題(6小題,每小題5分,共計30分)1、為等邊三角形,AB=8,AD⊥BC于點D,E為線段AD上一點,.以AE為邊在直線AD右側(cè)構(gòu)造等邊三角形AEF,連接CE,N為CE的中點.(1)如圖1,EF與AC交于點G,連接NG,BE,直接寫出NG與BE的數(shù)量關(guān)系;(2)如圖2,將繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為,M為線段EF的中點,連接DN,MN.當(dāng)時,猜想∠DNM的大小是否為定值,如果是定值,請寫出∠DNM的度數(shù)并證明,如果不是,請說明理由;(3)連接BN,在繞點A逆時針旋轉(zhuǎn)過程中,請直接寫出線段BN的最大值.2、明遇到這樣一個問題:如圖①,在四邊形ABCD中,∠B=40°,∠C=50°,AB=CD,AD=2,BC=4,求四邊形ABCD的面積.(1)經(jīng)過思考小明想到如下方法:以BC為邊作正方形BCMN,將四邊形ABCD繞著正方形BCMN的中心按順時針方向旋轉(zhuǎn)90°,180°,270°,而分別得到四邊形FNBA,EMNF,DCME,則四邊形ADEF是________.(填一種特殊的平行四邊形)∴S四邊形ABCD=________.(2)解決問題:如圖③,在四邊形ABCD中,∠BAD=140°,∠CDA=160°,AB=CD,AD=6,BC=12,則四邊形ABCD的面積為多少?3、如圖,在的方格紙中,已知格點P,請按要求畫格點圖形(頂點均在格點上).(1)在圖1中畫一個銳角三角形,使P為其中一邊的中點,再畫出該三角形向右平移2個單位后的圖形.(2)在圖2中畫一個以P為一個頂點的鈍角三角形,使三邊長都不相等,再畫出該三角形繞點P旋轉(zhuǎn)后的圖形.4、圖1,圖2都是由邊長為1的小等邊三角形構(gòu)成的網(wǎng)格,每個小等邊三角形的頂點稱為格點,線段的端點均在格點上,分別按要求畫出圖形.(1)在圖1中畫出等腰三角形,且點C在格點上.(畫出一個即可)(2)在圖2中畫出以為邊的菱形,且點D,E均在格點上.5、如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都為1,的頂點都在網(wǎng)格線的交點上,點B坐標(biāo)為,點C的坐標(biāo)為.(1)根據(jù)上述條件,在網(wǎng)格中畫出平面直角坐標(biāo)系;(2)畫出關(guān)于x軸對稱圖形;(3)點A繞點B順時針旋轉(zhuǎn)90°,點A對應(yīng)點的坐標(biāo)為______.6、如圖,已知△ABC是等邊三角形,在△ABC外有一點D,連接AD,BD,CD,將△ACD繞點A按順時針方向旋轉(zhuǎn)得到△ABE,AD與BE交于點F,∠BFD=97°.(1)求∠ADC的大?。唬?)若∠BDC=7°,BD=2,BE=4,求AD的長.-參考答案-一、單選題1、D【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念逐一判斷可得.【詳解】解:A.等邊三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;B.直角三角形既不是軸對稱圖形,也不是中心對稱圖形,不符合題意;C.正五邊形是軸對稱圖形,不是中心對稱圖形,不符合題意;D.矩形既是軸對稱圖形,又是中心對稱圖形,符合題意;故選:D.【考點】本題主要考查中心對稱圖形和軸對稱圖形,解題的關(guān)鍵是掌握把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.2、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)及旋轉(zhuǎn)的性質(zhì)可知,然后可得,則有,進而問題可求解.【詳解】解:∵四邊形是平行四邊形,,∴,由旋轉(zhuǎn)的性質(zhì)可得,∴,∴;故選B.【考點】本題主要考查平行四邊形的性質(zhì)與旋轉(zhuǎn)的性質(zhì),熟練掌握平行四邊形的性質(zhì)與旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項不合題意;B、不是中心對稱圖形,故本選項不合題意;C、是中心對稱圖形,故本選項符合題意;D、不是中心對稱圖形,故本選項不合題意.故選:C.【考點】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、B【解析】【分析】在AB上截取AQ=AO=1,利用SAS證明△AQD≌△AOE,推出QD=OE,當(dāng)QD⊥BC時,QD的值最小,即線段OE有最小值,利用勾股定理即可求解.【詳解】如圖,在AB上截取AQ=AO=1,連接DQ,∵將AD繞A點逆時針旋轉(zhuǎn)90°得到AE,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△AQD和△AOE中,,∴△AQD≌△AOE(SAS),∴QD=OE,∵D點在線段BC上運動,∴當(dāng)QD⊥BC時,QD的值最小,即線段OE2有最小值,∵△ABC是等腰直角三角形,∴∠B=45°,∵QD⊥BC,∴△QBD是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得QD=QB=,∴線段OE有最小值為,故選:B.【考點】本題考查了勾股定理,等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),熟記各圖形的性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.5、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:D.【考點】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關(guān)鍵.6、A【解析】【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.7、B【解析】【分析】利用軸對稱圖形和中心對稱圖形的定義逐項判斷即可.【詳解】A.是軸對稱圖形不是中心對稱圖形.故A不符合題意.B.是軸對稱圖形也是中心對稱圖形.故B符合題意.C.是軸對稱圖形但不是中心對稱圖形.故C不符合題意.D.不是中心對稱圖形也不是軸對稱圖形.故D不符合題意.故選:B【考點】本題考查軸對稱圖形和中心對稱圖形的定義,根據(jù)選項靈活判斷其圖形是否符合題意是解本題的關(guān)鍵.8、A【解析】【分析】連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.根據(jù)正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),角的和差關(guān)系,全等三角形的判定定理和性質(zhì)求出AQ的長度,根據(jù)三角形三邊關(guān)系確定當(dāng)點Q與點E重合時,BQ取得最大值,最后根據(jù)線段的和差關(guān)系計算即可.【詳解】解:如下圖所示,連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.∵正方形ABCD的邊長為4,的半徑為2,∴AD=CD=AB=4,∠ADC=90°,CP=2.∵點P繞點D按逆時針方向旋轉(zhuǎn)90°得到點Q,∴∠QDP=90°,QD=PD.∴∠ADC=∠QDP.∴∠ADC-∠QDC=∠QDP-∠QDC,即∠ADQ=∠CDP.∴.∴AQ=CP=2.∴AE=AQ=2.∵P是上任意一點,∴點Q在上移動.∴.∴當(dāng)點Q與點E重合時,BQ取得最大值為BE.∴BE=AE+AB=6.故選:A.【考點】本題考查正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),角的和差關(guān)系,全等三角形的判定定理和性質(zhì),三角形三邊關(guān)系,線段的和差關(guān)系,綜合應(yīng)用這些知識點是解題關(guān)鍵.9、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉(zhuǎn)的角度是120°的整數(shù)倍,∴旋轉(zhuǎn)的角度至少是120°.故選C.【考點】本題考查了旋轉(zhuǎn)對稱圖形,仔細(xì)觀察圖形求出旋轉(zhuǎn)角是120°的整數(shù)倍是解題的關(guān)鍵.10、C【解析】【分析】利用旋轉(zhuǎn)性質(zhì)可得△ABF≌△ACD,根據(jù)全等三角形的性質(zhì)一一判斷即可.【詳解】解:∵△ADC繞A順時針旋轉(zhuǎn)90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正確,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正確無法判斷BE=CD,故①錯誤,故選:C.【考點】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.二、填空題1、(3,﹣2)【解析】【分析】根據(jù)平面直角坐標(biāo)系內(nèi)兩點關(guān)于原點對稱橫縱坐標(biāo)互為相反數(shù),即可得出答案.【詳解】解:根據(jù)平面直角坐標(biāo)系內(nèi)兩點關(guān)于原點對稱橫縱坐標(biāo)互為相反數(shù),∴點(﹣3,2)關(guān)于原點對稱的點的坐標(biāo)是(3,﹣2),故答案為(3,﹣2).【考點】本題主要考查了平面直角坐標(biāo)系內(nèi)兩點關(guān)于原點對稱橫縱坐標(biāo)互為相反數(shù),難度較?。?、【解析】【分析】根據(jù)正六邊形的特點,每6次翻轉(zhuǎn)為一個循環(huán)組,用2022除以6的結(jié)果判斷出點B的位置,求出前進的距離.【詳解】解:∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個循環(huán)組循環(huán),∵,∴經(jīng)過2022次翻轉(zhuǎn)完成第337循環(huán)組,點B在開始時點B的位置,∵,∴,∴翻轉(zhuǎn)前進的距離=2×2022=4044,所以,點B的坐標(biāo)為,故答案為:.【考點】本題考查點的坐標(biāo),涉及坐標(biāo)與圖形變化-旋轉(zhuǎn),正六邊形的性質(zhì),確定出翻轉(zhuǎn)最后點B所在的位置是關(guān)鍵.3、y=-0.5x+5【解析】【分析】直接把點A(2,4)代入正比例函數(shù)y=kx,求出k的值即可;由A(2,4),AB⊥x軸于點B,可得出OB,AB的長,再由△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,由旋轉(zhuǎn)不變性的性質(zhì)可知DC=OB,AD=AB,故可得出C點坐標(biāo),再把C點和A點坐標(biāo)代入y=ax+b,解出解析式即可.【詳解】解:∵正比例函數(shù)y=kx(k≠0)經(jīng)過點A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x軸于點B,∴OB=2,AB=4,∵△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)設(shè)直線AC的解析式為y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式為:y=-0.5x+5【考點】本題考查的是一次函數(shù)圖象上點的坐標(biāo)特點及圖形旋轉(zhuǎn)的性質(zhì),熟知一次函數(shù)圖象上各點的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.4、【解析】【分析】取AB的中點H,連接CH、FH,設(shè)EC,DF交于點G,在△ABC中,由勾股定理得到AB=,由旋轉(zhuǎn)可知:△DCE≌△ACB,從而∠DCA=∠BCE,∠ADC=∠BEC,由∠DGC=∠EGF,可得∠AFB=90o,由直角三角形斜邊上的中線等于斜邊的一半,可得FH=CH=AB=,在△FCH中,當(dāng)F、C、H在一條直線上時,CF有最大值為.【詳解】解:取AB的中點H,連接CH、FH,設(shè)EC,DF交于點G,在△ABC中,∠ACB=90o,∵AC=,BC=2,∴AB=,由旋轉(zhuǎn)可知:△DCE≌△ACB,∴∠DCE=∠ACB,DC=AC,CE=CB,∴∠DCA=∠BCE,∵∠ADC=(180o-∠ACD),∠BEC=(180o-∠BCE),∴∠ADC=∠BEC,∵∠DGC=∠EGF,∴∠DCG=∠EFG=90o,∴∠AFB=90o,∵H是AB的中點,∴FH=AB,∵∠ACB=90o,∴CH=AB,∴FH=CH=AB=,在△FCH中,F(xiàn)H+CH>CF,當(dāng)F、C、H在一條直線上時,CF有最大值,∴線段CF的最大值為.故答案為:【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、勾股定理,解決本題的關(guān)鍵是掌握全等的性質(zhì).5、【解析】【分析】根據(jù)菱形的性質(zhì)可得出∠AOC=60°,則三角形OAC為等邊三角形,即AC=,根據(jù)菱形對角線的性質(zhì)可得出∠AOE=30°,根據(jù)勾股定理可得OE,OB,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得OB=OB1,∠B1OF=45°,根據(jù)勾股定理即可得出OF與B1F的長度,即可得出答案.【詳解】解:如圖,連接AC與OB相交于點E,過點B1作B1F⊥x軸,垂足為F,∵四邊形OABC為菱形,,OA=OC,∴△AOC是等邊三角形,OC=OA=AC=,∵AC⊥OB,在Rt△OAE中,OA=,AE=AC=,∴OE=AE=,∴OB=,∵∠COB=∠AOC=30°,∠BOB1=75°,∴∠B1OF=180°-60°-∠BOB1=180°-60°-75°=45°,在Rt△B1OF中,OB1=OB=,OF=B1F,∴OF2+B1F2=OB12,可得OF=B1F=,∵點B1在第二象限,∴點B1的坐標(biāo)為.故答案為:.【考點】本題主要考查了菱形及旋轉(zhuǎn)的性質(zhì),熟練應(yīng)用相關(guān)性質(zhì)進行計算是解決本題的關(guān)鍵.6、.【解析】【分析】過點C作CD⊥x軸于點D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),從而求得點C坐標(biāo),設(shè)直線AC的解析式為y=kx+b,將點A,點C坐標(biāo)代入求得k和b,從而得解.【詳解】解:∵∴過點作軸于點,∴∠BOA=∠ADC=90°.∵∠BAC=90°,∴∠BAO+∠CAD=90°.∵∠ABO+∠BAO=90°,∴∠CAD=∠ABO.∵AB=AC,

∴.∴∴設(shè)直線的解析式為,將點,點坐標(biāo)代入得∴∴直線的解析式為.故答案為.【考點】本題是幾何圖形旋轉(zhuǎn)與待定系數(shù)法求一次函數(shù)解析式的綜合題,難度中等.7、【解析】【分析】根據(jù)原點對稱的點的特征求解即可;【詳解】點與點關(guān)于原點對稱,,,故.故答案為:.【考點】本題主要考查了關(guān)于原點對稱的點的坐標(biāo),準(zhǔn)確計算是解題的關(guān)鍵.8、【解析】【分析】先連接,,作,的垂直平分線交于點,連接,,再由題意得到旋轉(zhuǎn)中心,由旋轉(zhuǎn)的性質(zhì)即可得到答案.【詳解】如圖,連接,,作,的垂直平分線交于點,連接,,∵,的垂直平分線交于點,∴點是旋轉(zhuǎn)中心,∵,∴旋轉(zhuǎn)角.故答案為.【考點】本題考查旋轉(zhuǎn),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì).9、或##或【解析】【分析】連接,根據(jù)題意可得,當(dāng)∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當(dāng)∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關(guān)鍵.10、【解析】【分析】先求出AB,再利用正方形的性質(zhì)確定C點坐標(biāo),由于2020=4×505,所以第2020次旋轉(zhuǎn)結(jié)束時,正方形ABCD回到初始位置,再旋轉(zhuǎn)2次,得出C的坐標(biāo)便是答案值.【詳解】∵A(4,3),B(4,-3),∴AB=3-(-3)=6,∵四邊形ABCD為正方形,∴BC=AB=6,∴C(10,-3),∵△OAB與正方形ABCD組成的圖形繞點O逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,∴每4次一個循環(huán),∵2022=4×505+2,∴第2020次旋轉(zhuǎn)結(jié)束時,正方形ABCD回到初始位置,從初始位置再旋轉(zhuǎn)兩次,就到第2022次旋轉(zhuǎn)到的位置,∴點C的坐標(biāo)為(-10,3).故答案為:(-10,3).【考點】本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),正方形的性質(zhì),解答本題的關(guān)鍵是找出C點坐標(biāo)變化的規(guī)律.三、解答題1、(1)(2)∠DNM的大小是定值,為120°(3)【解析】【分析】(1)連接CF.由等邊三角形的性質(zhì)易證△BAE≌△CAF(SAS),即得出.再根據(jù)三角形中位線定理即可求出;(2)連接BE,CF.利用全等三角形的性質(zhì)證明∠EBC+∠BCF=120°,再利用三角形的中位線定理,三角形的外角的性質(zhì)證明∠DNM=∠EBC+∠BCF即可;(3)取AC的中點J,連接BJ,結(jié)合三角形的中位線定理可求出BJ,JN.最后根據(jù)三角形三邊關(guān)系即可得出結(jié)論.(1)解:如圖,連接CF.∵△ABC是等邊三角形,AD⊥BC,∴AB=BC=AC,∠BAD=∠CAD=30°.∵△AEF是等邊三角形,∴∠EAF=60°,G為EF中點,∴∠EAG=∠GAF=30°.即在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴,∵N為CE的中點,G為EF中點,∴,∴;(2)∠DNM=120°是定值,證明如下,如圖,連接BE,CF.同(1)可證△BAE≌△CAF(SAS),∴∠ABE=∠ACF.∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC-∠ABE+∠ACB+∠ACF=120°.∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECF,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠NCD,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACB+∠ACN+∠ECF=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.綜上可知∠DNM的大小是定值,為120°;(3)如圖,取AC的中點J,連接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=.∵BJ=AD=,∴BN≤BJ+JN,即BN≤,故線段BN的最大值為.【考點】本題屬于幾何變換綜合題,考查了等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),三角形的中位線定理,三角形三邊關(guān)系的應(yīng)用.解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.2、(1)正方形,3(2)S四邊形ABCD=【解析】【分析】(1)由旋轉(zhuǎn)的性質(zhì)得,證明四邊形ADEF是菱形,設(shè)正方形BCMN的中心為點O,連接OA、OD、OF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到,,可得出,則,根據(jù)正方形的判定條件得到ADEF是正方形,根據(jù)求解即可;(2)以BC為邊作等邊三角形BCM,將四邊形ABCD繞著等邊三角形BCM的中心按順時針方向旋轉(zhuǎn)120°,240°,而分別得到四邊形MEAB,EMCD,則AD=AE=ED,根據(jù)S四邊形ABCD=(S△BCM-S△ADE)計算即可;(1)如圖,設(shè)正方形BCMN的中心為點O,連接OA、OD、OF,∵以BC為邊作正方形BCMN,將四邊形ABCD繞著正方形BCMN的中心按順時針方向旋轉(zhuǎn)90°,180°,270°,而分別得到四邊形FNBA,EMNF,DCME,∴,,,∴四邊形ADEF是菱形,,∴,∴菱形ADEF是正方形,∴;故答案是:正方形;3;(2)解:如圖,以BC為邊作等邊三角形BCM,將四邊形ABCD繞著等邊三角形BCM的中心按順時針方向旋轉(zhuǎn)120°,240°,而分別得到四邊形MEAB,EMCD,則AD=AE=ED,∴△ADE是等邊三角形,∴S四邊形ABCD=(S△BCM-S△ADE),∵AD=6,BC=12,∴易得△BCM和△ADE的高分別為6和3.∴S△BCM=×12×6=36,S△ADE=×6×3=9.∴S四邊形ABCD=×(36-9)=9.【考點】本題主

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論