難點解析-人教版8年級數(shù)學(xué)上冊《軸對稱》單元測試試題(解析版)_第1頁
難點解析-人教版8年級數(shù)學(xué)上冊《軸對稱》單元測試試題(解析版)_第2頁
難點解析-人教版8年級數(shù)學(xué)上冊《軸對稱》單元測試試題(解析版)_第3頁
難點解析-人教版8年級數(shù)學(xué)上冊《軸對稱》單元測試試題(解析版)_第4頁
難點解析-人教版8年級數(shù)學(xué)上冊《軸對稱》單元測試試題(解析版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、觀察下列作圖痕跡,所作線段為的角平分線的是(

)A. B.C. D.2、如圖是一個正方體,小敏同學(xué)經(jīng)過研究得到如下5個結(jié)論,正確的結(jié)論有(

)個①用剪刀沿著它的棱剪開這個紙盒,至少要剪7刀,才能展開成平面圖形;②用一平面去截這個正方體得到的截面是三角形ABC,則∠ABC=45°;③一只螞蟻在一個實心正方體木塊P點處想沿著表面爬到C點最近的路只有4條;④用一平面去截這個正方體得到的截面可能是八邊形;⑤正方體平面展開圖有11種不同的圖形.A.1 B.2 C.3 D.43、如圖,在△ABC中,AD是BC邊上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,連接FG,交DA的延長線于點E,連接BG,CF,則下列結(jié)論:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正確的有(

)A.①②③ B.①②④ C.①③④ D.①②③④4、如圖,在中,,的周長10,和的平分線交于點,過點作分別交、于、,則的長為(

)A.10 B.6 C.4 D.不確定5、如圖是4×4的正方形網(wǎng)格,其中已有3個小方格涂成了黑色.現(xiàn)在要從其余13個白色小方格中選出一個也涂成黑色,與原來3個黑色方格組成的圖形成為軸對稱圖形,則符合要求的白色小正方格有()A.1個 B.2個 C.3個 D.4個6、如圖,∠A=30°,∠C′=60°,△ABC與△A′B′C′關(guān)于直線l對稱,則∠B度數(shù)為(

)A. B. C. D.7、如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是()A.①②③ B.①②④ C.①③④ D.①②③④8、如圖,在中,,,點是邊上任意一點,過點作交于點,則的度數(shù)是(

).A. B. C. D.9、如圖,等邊三角形ABC中,AD⊥BC,垂足為D,點E在線段AD上,∠EBC=45°,則∠ACE等于()A.15° B.30° C.45° D.60°10、一條船從海島A出發(fā),以15海里/時的速度向正北航行,2小時后到達海島B處.燈塔C在海島在海島A的北偏西42°方向上,在海島B的北偏西84°方向上.則海島B到燈塔C的距離是(

)A.15海里 B.20海里 C.30海里 D.60海里第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,是內(nèi)一定點,點,分別在邊,上運動,若,,則的周長的最小值為___________.2、如圖折疊一張矩形紙片,已知∠1=70°,則∠2的度數(shù)是__.3、如圖,點與點關(guān)于直線對稱,則______.4、等腰三角形的一個外角為100°,則它的底角是______.5、如圖,在銳角中,,,平分,、分別是、上的動點,則的最小值是______.6、如圖,在矩形ABCD中,AD=6,AB=4,∠BAD的平分線交BC于點E,則DE=____.7、如圖,△ABC中,AB=BC,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF,若∠BAE=25°,則∠ACF=__________度.8、如圖已知OA=a,P是射線ON上一動點,∠AON=60°,當(dāng)OP=________

時,△AOP為等邊三角形.9、如圖,等邊ABC的邊長為6,點D是AB上一動點,過點D作DEAC交BC于E,將BDE沿著DE翻折得到,連接,則的最小值為________.10、如圖,在中,的中垂線交于點,交于點,已知,的周長為22,則______.三、解答題(5小題,每小題6分,共計30分)1、如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O,限用無刻度直尺完成以下作圖:(1)在圖1中作線段BC的中點P;(2)在圖2中,在OB、OC上分別取點E、F,使EF∥BC.2、已知,平分,點分別在上.(1)如圖1,若于點,于點.①利用等腰三角形“三線合一”,將補成一個等邊三角形,可得的數(shù)量關(guān)系為________.②請問:是否等于呢?如果是,請予以證明.(2)如圖2,若,則(1)中的結(jié)論是否仍然成立?若成立,請予以證明;若不成立,請說明理由.3、如圖,△是等邊三角形,在直線上,.求證:.4、如圖,點P是∠AOB外的一點,點Q與P關(guān)于OA對稱,點R與P關(guān)于OB對稱,直線QR分別交OA、OB于點M、N,若PM=PN=4,MN=5.(1)求線段QM、QN的長;(2)求線段QR的長.5、如圖,在四邊形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)角平分線畫法逐一進行判斷即可.【詳解】:所作線段為AB邊上的高,選項錯誤;B:做圖痕跡為AB邊上的中垂線,CD為AB邊上的中線,選項錯誤;C:CD為的角平分線,滿足題意。D:所作線段為AB邊上的高,選項錯誤故選:C.【考點】本題考查點到直線距離的畫法,角平分線的畫法,中垂線的畫法,能夠區(qū)別彼此之間的不同是解題切入點.2、B【解析】【分析】根據(jù)正方體的每個面都是正方形判斷②;根據(jù)一平面去截n棱柱,截面最多是(n+2)邊形判斷④;根據(jù)正方體的展開圖判斷⑤①;根據(jù)正方體有六個面,從P到C,可以走“前+上、前+右、左+上、左+后、下+右、下+后”這六處組合的面,這其中任何一個組合的兩個面展開均是相同的長方形,而P到C的最短路線是這個長方形的對角線,判斷③.【詳解】解:(1)AB、BC、AC均是相同正方形的對角線,故AB=BC=AC,△ABC是等邊三角形,∠ABC=60°,②錯誤;(2)用一平面去截n棱柱,截面最多是(n+2)邊形,正方體是四棱柱,所以截面最多是六邊形,④錯誤;(3)正方體的展開圖只有11種,⑤正確;(4)正方體的11種展開圖,六個小正方形均是一連一關(guān)系,即必須是5條邊相連,正方體有12條棱,所以要剪12-5=7條棱,才能把正方體展開成平面圖形,①正確;(5)正方體有六個面,P點屬于“前、左、下面”這三個面,所以從P到C,可以走“前+上、前+右、左+上、左+后、下+右、下+后”這六處組合的面,這其中任何一個組合的兩個面展開均是相同的長方形,而P到C的最短路線是這個長方形的對角線,這些對角線均相等,故從P到C的最短路線有6條;③錯誤.綜上所述,正確的選項是①⑤,故選B【考點】本題考查了正方體的有關(guān)知識.初中數(shù)學(xué)中的典型題型“多結(jié)論題型”,判別時方法:①容易判別的先判別,無需按順序解答;②注意部分結(jié)論間存在有一定的關(guān)聯(lián)性.3、D【解析】【分析】證得△CAF≌△GAB(SAS),從而推得①正確;利用△CAF≌△GAB及三角形內(nèi)角和與對頂角,可判斷②正確;證明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,則③正確,同理△ANG≌△CDA,得出NG=AD,則FM=NG,證明△FME≌△GNE(AAS).可得出結(jié)論④正確.【詳解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正確;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC與AG所交的對頂角相等,∴BG與FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正確;過點F作FM⊥AE于點M,過點G作GN⊥AE交AE的延長線于點N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正確,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正確.故選:D.【考點】本題綜合考查了全等三角形的判定與性質(zhì)及等腰三角形的三線合一性質(zhì)與互余、對頂角,三角形內(nèi)角和等幾何基礎(chǔ)知識.熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)平行線、角平分線和等腰三角形的關(guān)系可證DO=DB和EO=EC,從而得出DE=DB+EC,然后根據(jù)的周長即可求出AB.【詳解】解:∵∴∠OBC=∠DOB∵BO平分∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO=DB同理可證:EO=EC∴DE=DO+EO=DB+EC∵,的周長10,∴AD+AE+DE=10∴AD+AE+DB+EC=10∴AB+AC=10∴AB=10-AC=6故選B.【考點】此題考查的是平行線的性質(zhì)、角平分線的定義和等腰三角形的判定,掌握平行線、角平分線和等腰三角形的關(guān)系是解決此題的關(guān)鍵.5、C【解析】【分析】根據(jù)軸對稱的性質(zhì)可直接進行求解.【詳解】解:如圖所示:,共3個,故選:C.【考點】本題主要考查軸對稱圖形的性質(zhì),熟練掌握軸對稱的性質(zhì)是解題的關(guān)鍵.6、C【解析】【分析】由已知條件,根據(jù)軸對稱的性質(zhì)可得∠C=∠C′=30°,利用三角形的內(nèi)角和等于180°可求答案.【詳解】∵△ABC與△A′B′C′關(guān)于直線l對稱,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°?30°-60°=90°.故選:C.【考點】主要考查了軸對稱的性質(zhì)與三角形的內(nèi)角和是180度;求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°.7、D【解析】【分析】根據(jù)三角形內(nèi)角和定理以及角平分線定義判斷①;根據(jù)全等三角形的判定和性質(zhì)判斷②③;根據(jù)角平分線的判定與性質(zhì)判斷④.【詳解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分別平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正確.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正確.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正確.連接CP,如下圖所示:∵△ABC的角平分線AD、BE相交于點P,∴點P到AB、AC的距離相等,點P到AB、BC的距離相等,∴點P到BC、AC的距離相等,∴點P在∠ACB的平分線上,∴CP平分∠ACB,故④正確,綜上所述,①②③④均正確,故選:D.【考點】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理.掌握相關(guān)性質(zhì)是解題的關(guān)鍵.8、B【解析】【分析】根據(jù)等腰三角形的性質(zhì)可得∠B=∠C,進而可根據(jù)三角形的內(nèi)角和定理求出∠A的度數(shù),然后根據(jù)平行線的性質(zhì)可得∠DEC=∠A,進一步即可求出結(jié)果.【詳解】解:∵,,∴∠B=∠C=65°,∴∠A=180°-∠B-∠C=50°,∵DF∥AB,∴∠DEC=∠A=50°,∴∠FEC=130°.故選:B.【考點】本題考查了等腰三角形的性質(zhì)、平行線的性質(zhì)和三角形的內(nèi)角和定理等知識,屬于常考題型,熟練掌握上述基礎(chǔ)知識是解題的關(guān)鍵.9、A【解析】【分析】先判斷出AD是BC的垂直平分線,進而求出∠ECB=45°,即可得出結(jié)論.【詳解】解:∵等邊三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分線,∵點E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故選A.【考點】此題主要考查了等邊三角形的性質(zhì),垂直平分線的判定和性質(zhì),等腰三角形的性質(zhì),求出∠ECB是解本題的關(guān)鍵.10、C【解析】【分析】根據(jù)題意畫出圖形,根據(jù)三角形外角性質(zhì)求出∠C=∠CAB=42°,根據(jù)等角對等邊得出BC=AB,求出AB即可.【詳解】解:∵根據(jù)題意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD-∠CAB=42°=∠CAB,∴BC=AB,∵AB=15海里/時×2時=30海里,∴BC=30海里,即海島B到燈塔C的距離是30海里.故選C.【考點】本題考查了等腰三角形的性質(zhì)和判定和三角形的外角性質(zhì),關(guān)鍵是求出∠C=∠CAB,題目比較典型,難度不大.二、填空題1、3【解析】【分析】如圖,作P關(guān)于OA,OB的對稱點C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.根據(jù)對稱的性質(zhì)可以證得:△COD是等邊三角形,據(jù)此即可求解.【詳解】如圖,作P關(guān)于OA,OB的對稱點C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.∵點P關(guān)于OA的對稱點為C,∴PM=CM,OP=OC,∠COA=∠POA;∵點P關(guān)于OB的對稱點為D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等邊三角形,∴CD=OC=OD=3.∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【考點】此題主要考查軸對稱--最短路線問題,綜合運用了等邊三角形的知識.正確作出圖形,理解△PMN周長最小的條件是解題的關(guān)鍵.2、55°【解析】【詳解】,,.3、-5【解析】【分析】根據(jù)點與點關(guān)于直線對稱求得a,b的值,最后代入求解即可.【詳解】解:∵點與點關(guān)于直線對稱∴a=-2,,解得b=-3∴a+b=-2+(-3)=-5故答案為-5.【考點】本題考查了關(guān)于y=-1對稱點的性質(zhì),根據(jù)對稱點的性質(zhì)求得a、b的值是解答本題的關(guān)鍵.4、80°或50°【解析】【分析】等腰三角形的一個外角等于100°,則等腰三角形的一個內(nèi)角為80°,但已知沒有明確此角是頂角還是底角,所以應(yīng)分兩種情況進行分類討論.【詳解】∵等腰三角形的一個外角等于100°,∴等腰三角形的一個內(nèi)角為80°,當(dāng)80°為頂角時,其他兩角都為50°、50°,當(dāng)80°為底角時,其他兩角為80°、20°,所以等腰三角形的底角可以是50°,也可以是80°.答案為:80°或50°.【考點】本題考查等腰三角形的性質(zhì),當(dāng)已知角沒有明確是頂角還是底角的時候,分類討論是關(guān)鍵.5、4【解析】【分析】過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,則CE即為CM+MN的最小值,再根據(jù)BC=8,∠ABC=30°,由直角三角形的性質(zhì)即可求出CE的長.【詳解】解:過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,∵BD平分∠ABC,∴M′E=M′N′,∴M′N′+CM′=EM′+CM′=CE,則CE即為CM+MN的最小值,在Rt中,BC=8,∠ABC=30°,∴CM+MN的最小值是4.故答案為:4.【考點】本題考查的是軸對稱-最短路線問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,含有30°的直角三角形的性質(zhì)求解是解答此題的關(guān)鍵.6、2【解析】【分析】由矩形的性質(zhì)及角平分線的性質(zhì)解得,,即可證明是等腰直角三角形,從而解得,最后在中利用勾股定理解題即可.【詳解】在矩形ABCD中,平分是等腰直角三角形中故答案為:2.【考點】本題考查矩形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.7、70【解析】【分析】先利用HL證明△ABE≌△CBF,可證∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【詳解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案為70.【考點】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.8、a【解析】【分析】根據(jù)“有一內(nèi)角為60度的等腰三角形是等邊三角形”進行解答.【詳解】∵∠AON=60°,∴當(dāng)OA=OP=a時,△AOP為等邊三角形.故答案是:a.【考點】本題考查了等邊三角形的判定.等邊三角形的判定方法:(1)由定義判定:三條邊都相等的三角形是等邊三角形.(2)判定定理1:三個角都相等的三角形是等邊三角形.(3)判定定理2:有一個角是60°的等腰三角形是等邊三角形.9、3【解析】【分析】先找出B'點變化的規(guī)律,可發(fā)現(xiàn)B'在∠ABC的角平分線上運動,故AB'取最小值時,B'點在AC中點上.【詳解】如圖,∵DE∥AC,△ABC是等邊三角形,∴△BDE是等邊三角形,折疊后的△B′DE也是等邊三角形,過B作DE的垂直平分線,∵BD=BE,B′D=B′E,∴BB′都在DE的垂直平分線上,∵AB′最小,即A到DE的垂直平分線的距離最小,此時AB′⊥BB′,∴AB′=AC=12×6=3,即AB′的最小值是3.故答案為:3.【考點】本題主要考查等邊三角形和垂直平分線的性質(zhì),掌握和理解等邊三角形性質(zhì)是本題關(guān)鍵.10、12【解析】【分析】由的中垂線交于點,可得再利用的周長為22,列方程解方程可得答案.【詳解】解:的中垂線交于點,,的周長為22,故答案為:【考點】本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析.【解析】【分析】(1)延長BA和CD,它們相交于點Q,然后延長QO交BC于P,則PB=PC,根據(jù)線段垂直平分線的逆定理可證明;(2)連結(jié)AP交OB于E,連結(jié)DP交OC于F,則EF∥BC.分別證明△BEP≌△CFP,△BEP≌△CFP可得∠APB=∠DPC和∠PEF=∠PFE,根據(jù)三角形內(nèi)角和定理和平角的定義可得∠APB=∠PEF,即可證明EF//BC.【詳解】解:(1)如圖1,點P為所作,理由如下:∵∠A=∠D=90°,AC=BD,BC=CB,∴△ABC≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴QB=QC,OB=OC∴Q,O在BC的垂直平分線上,∴延長QO交BC于P,就有P為線段BC的中點;(2)如圖2,EF為所作.理由如下:∵△ABC≌△DCB∴AB=DC,又∵∠ABC=∠DCB,BP=PC∴△ABP≌△DCP∴∠APB=∠DPC又∵∠DBC=∠ACB,BP=PC∴△BEP≌△CFP∴PE=PF∴∠PEF=∠PFE,∵∠APB+∠DPC+∠APD=180°∠PEF+∠PFE+∠APD=180°∴∠APB=∠PEF∴EF//BC.【考點】本題考查作圖——復(fù)雜作圖,等腰三角形的性質(zhì),線段垂直平分線的逆定理,平行線的判定定理,全等三角形的判定與性質(zhì).掌握相關(guān)定理并能熟練運用是解決此題的關(guān)鍵.2、(1)①(或),理由見解析;②,理由見解析;(2)仍成立,理由見解析【解析】【分析】(1)①由題意利用角平分線的性質(zhì)以及含角的直角三角形性質(zhì)進行分析即可;②根據(jù)題意利用①的結(jié)論進行等量代換求解即可;(2)根據(jù)題意過點分別作的垂線,垂足分別為,進而利用全等三角形判定得出,以此進行分析即可.【詳解】解:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論