強(qiáng)化訓(xùn)練人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試練習(xí)題(解析版)_第1頁(yè)
強(qiáng)化訓(xùn)練人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試練習(xí)題(解析版)_第2頁(yè)
強(qiáng)化訓(xùn)練人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試練習(xí)題(解析版)_第3頁(yè)
強(qiáng)化訓(xùn)練人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試練習(xí)題(解析版)_第4頁(yè)
強(qiáng)化訓(xùn)練人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試練習(xí)題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、的周長(zhǎng)為32cm,AB:BC=3:5,則AB、BC的長(zhǎng)分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm2、如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE3、如圖,在正方形有中,E是AB上的動(dòng)點(diǎn),(不與A、B重合),連結(jié)DE,點(diǎn)A關(guān)于DE的對(duì)稱點(diǎn)為F,連結(jié)EF并延長(zhǎng)交BC于點(diǎn)G,連接DG,過點(diǎn)E作⊥DE交DG的延長(zhǎng)線于點(diǎn)H,連接,那么的值為()A.1 B. C. D.24、如圖,平行四邊形ABCD的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)是()A.12 B.15 C.18 D.245、已知,四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④6、如圖所示,公路AC、BC互相垂直,點(diǎn)M為公路AB的中點(diǎn),為測(cè)量湖泊兩側(cè)C、M兩點(diǎn)間的距離,若測(cè)得AB的長(zhǎng)為6km,則M、C兩點(diǎn)間的距離為()A.2.5km B.4.5km C.5km D.3km7、直角三角形中,兩直角邊長(zhǎng)分別是12和5,則斜邊上的中線長(zhǎng)是()A.2.5 B.6 C.6.5 D.138、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:29、如圖,陰影部分是將一個(gè)菱形剪去一個(gè)平行四邊形后剩下的,要想知道陰影部分的周長(zhǎng),需要測(cè)量一些線段的長(zhǎng),這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD10、如圖,已知在正方形ABCD中,厘米,,點(diǎn)E在邊AB上,且厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上以a厘米/秒的速度由C點(diǎn)向D點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.若存在a與t的值,使與全等時(shí),則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或2第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則EF=_____cm.2、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB上的動(dòng)點(diǎn),則PE+PF的最小值是_____.3、如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長(zhǎng)為__________.4、如圖,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延長(zhǎng)線上取一點(diǎn)C,使得DC=BD,在直線AD左側(cè)有一動(dòng)點(diǎn)P滿足∠PAD=∠PDB,連接PC,則線段CP長(zhǎng)的最大值為________.5、如圖,平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,M、N分別為AB、BC的中點(diǎn),若OM=1.5,ON=1,則平行四邊形ABCD的周長(zhǎng)是________.6、若一個(gè)菱形的兩條對(duì)角線的長(zhǎng)為3和4,則菱形的面積為___________.7、如圖中,分別是由個(gè)、個(gè)、個(gè)正方形連接成的圖形,在圖中,;在圖中,;通過以上計(jì)算,請(qǐng)寫出圖中______(用含的式子表示)8、如圖,將n個(gè)邊長(zhǎng)都為1的正方形按如圖所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則n個(gè)正方形重疊形成的重疊部分的面積和為_____.9、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線BD上有一動(dòng)點(diǎn)K,則KA+KE的最小值為_____________.10、正方形ABCD的邊長(zhǎng)為4,則圖中陰影部分的面積為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,點(diǎn)E是邊BC延長(zhǎng)線上一點(diǎn),連接AE、DE,過點(diǎn)C作CF⊥DE于點(diǎn)F,且DF=EF.(1)求證:AD=CE.(2)若CD=5,AC=6,求△AEB的面積.2、如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.

(1)在方格紙中畫出以AB為對(duì)角線的正方形AEBF,點(diǎn)E、F在小正方形的頂點(diǎn)上;(2)在方格紙中畫出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫出BM的長(zhǎng).3、已知:如圖,,,AD是BC上的高線,CE是AB邊上的中線,于G.(1)若,求線段AC的長(zhǎng);(2)求證:.4、如圖,正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).試畫出一個(gè)頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.5、如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長(zhǎng)為32cm,∴,即,解得:,∴.故選:C【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對(duì)邊相等是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對(duì)等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項(xiàng).故選D.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對(duì)邊互相平行,等角對(duì)等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.3、B【解析】【分析】作輔助線,構(gòu)建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說(shuō)明△BNH是等腰直角三角形,可得結(jié)論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定定理和性質(zhì)定理,等知識(shí),解決本題的關(guān)鍵是作出輔助線,利用正方形的性質(zhì)得到相等的邊和相等的角,證明三角形全等.4、B【解析】【分析】根據(jù)平行四邊形的對(duì)邊相等和對(duì)角線互相平分可得,OB=OD,又因?yàn)镋點(diǎn)是CD的中點(diǎn),可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長(zhǎng).【詳解】解:∵?ABCD的周長(zhǎng)為36,∴2(BC+CD)=36,則BC+CD=18.∵四邊形ABCD是平行四邊形,對(duì)角線AC,BD相交于點(diǎn)O,BD=12,∴OD=OB=BD=6.又∵點(diǎn)E是CD的中點(diǎn),∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長(zhǎng)=OD+OE+DE=BD+(BC+CD)=6+9=15,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、平行四邊形的性質(zhì).解題時(shí),利用了“平行四邊形對(duì)角線互相平分”、“平行四邊形的對(duì)邊相等”的性質(zhì).5、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對(duì)選項(xiàng)進(jìn)行分析判斷即可.【詳解】解:A、①④可以說(shuō)明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說(shuō)明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說(shuō)明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯(cuò)誤.D、③可以說(shuō)明四邊形是平行四邊形,再由②可得:對(duì)角線相等的平行四邊形為矩形,故D正確.故選:C.【點(diǎn)睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.6、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M(jìn)為AB的中點(diǎn),∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點(diǎn)間的距離為3km,故選:D.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),解題關(guān)鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.7、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長(zhǎng).故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).8、D【解析】【分析】?jī)山M對(duì)角分別相等的四邊形是平行四邊形,所以∠A和∠C是對(duì)角,∠B和∠D是對(duì)角,對(duì)角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對(duì)角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點(diǎn)睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時(shí),應(yīng)仔細(xì)觀察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.9、A【解析】【分析】如圖,延長(zhǎng),交于點(diǎn),證明,,再利用菱形的性質(zhì)證明:陰影部分的周長(zhǎng),從而可得答案.【詳解】解:如圖,延長(zhǎng),交于點(diǎn),四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長(zhǎng),故需要測(cè)量的長(zhǎng)度,故選A.【點(diǎn)睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長(zhǎng)是解本題的關(guān)鍵.10、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進(jìn)行求解即可.【詳解】解:當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運(yùn)動(dòng)時(shí)間t=4÷2=2(秒);當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間t=(秒).綜上t的值為2.5或2.故選:D.【點(diǎn)睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個(gè)角都是直角;兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等.同時(shí)要注意分類思想的運(yùn)用.二、填空題1、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點(diǎn)E、F分別是AO、AD的中點(diǎn),∴EF=OD=2.5cm,故答案為:2.5.【點(diǎn)睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長(zhǎng)及證明EF=OD.2、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,此時(shí)P′E′+P′F=ME′,過點(diǎn)A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點(diǎn)睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對(duì)稱?最短問題等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.3、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長(zhǎng),從而可求得菱形的周長(zhǎng).【詳解】∵四邊形ABCD是菱形,且對(duì)角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長(zhǎng)為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長(zhǎng)等知識(shí),掌握這些知識(shí)是解答本題的關(guān)鍵.4、##【解析】【分析】如圖,取AD的中點(diǎn)O,連接OP、OC,然后求出OP、OC的長(zhǎng),最后根據(jù)三角形的三邊關(guān)系即可解答.【詳解】解:如圖,取AD的中點(diǎn)O,連接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值為.故填:.【點(diǎn)睛】本題主要考查了直角三角形斜邊中線的性質(zhì)、勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵在于正確添加常用輔助線,進(jìn)而求得OP、OC的長(zhǎng).5、10【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得BO=DO,AD=BC,AB=CD,再由條件M、N分別為AB、BC的中點(diǎn)可得MO是△ABD的中位線,NO是△BCD的中位線,再根據(jù)三角形中位線定理可得AD、DC的長(zhǎng).【詳解】解:∵四邊形ABCD是平行四邊形,∴BO=DO,AD=BC,AB=CD,∵M(jìn)、N分別為AB、BC的中點(diǎn),∴MO=AD,NO=CD,∵OM=1.5,ON=1,∴AD=3,CD=2,∴平行四邊形ABCD的周長(zhǎng)是:3+3+2+2=10,故答案為:10.【點(diǎn)睛】此題主要考查了平行四邊形的性質(zhì),以及中位線定理,關(guān)鍵是掌握平行四邊形對(duì)邊相等,對(duì)角線互相平分.6、6【解析】【分析】由題意直接由菱形的面積等于對(duì)角線乘積的一半進(jìn)行計(jì)算即可.【詳解】解:菱形的面積.故答案為:6.【點(diǎn)睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對(duì)角線乘積的一半是解題的關(guān)鍵.7、90n【解析】【分析】連接各小正方形的對(duì)角線,由圖1中四邊形內(nèi)角和定理化簡(jiǎn)可得:;由圖2中四邊形內(nèi)角和定理化簡(jiǎn)可得:;結(jié)合圖形即可發(fā)現(xiàn)規(guī)律,求得結(jié)果.【詳解】解:連接各小正方形的對(duì)角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點(diǎn)睛】題目主要考查根據(jù)規(guī)律列出相應(yīng)代數(shù)式,正方形性質(zhì)等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關(guān)鍵.8、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為(n-1)個(gè)陰影部分的和.【詳解】解:由題意可得一個(gè)陰影部分面積等于正方形面積的,即是,n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個(gè)這樣的正方形重疊部分(陰影部分)的面積和的計(jì)算方法,難點(diǎn)是求得一個(gè)陰影部分的面積.9、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對(duì)稱,推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對(duì)稱,即C關(guān)于BD的對(duì)稱點(diǎn)是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱-最短路徑問題,等邊三角形的性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.10、8【解析】【分析】正方形的對(duì)角線是它的一條對(duì)稱軸,對(duì)應(yīng)點(diǎn)到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進(jìn)行計(jì)算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對(duì)稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會(huì)于轉(zhuǎn)化的思想思考問題.三、解答題1、(1)見解析;(2)39【分析】(1)首先根據(jù)CF⊥DE,DF=EF得出CF為DE的中垂線,然后根據(jù)垂直平分線的性質(zhì)得到CD=CE,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到CD=AD,即可證明AD=CE;(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后結(jié)合三角形的面積公式進(jìn)行計(jì)算.【詳解】(1)證明:∵DF=EF∴點(diǎn)F為DE的中點(diǎn)又∵CF⊥DE∴CF為DE的中垂線∴CD=CE又∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線∴CD==AD∴AD=CE(2)解:由(1)得CD=CE==5∴AB=10∴在Rt△ABC中,BC==8∴EB=EC+BC=13∴.【點(diǎn)睛】此題考查了垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式等知識(shí),解題的關(guān)鍵是熟練掌握垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式.2、(1)見詳解;(2)見詳解.【分析】(1)根據(jù)勾股定理求出AB的長(zhǎng),以AB為對(duì)角線的正方形AEBF,根據(jù)正方形的性質(zhì)求出正方形邊長(zhǎng)AE=,根據(jù)勾股定理構(gòu)造直角三角形橫1豎3,或橫3豎1,利用點(diǎn)A平移找到點(diǎn)E,點(diǎn)F即可完成求解;(2)根據(jù)勾股定理求出CD的長(zhǎng),△CDM為等腰直角三角形,設(shè)CM=DM=x,再利用勾股定理,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形,利用點(diǎn)C平移得到點(diǎn)M,即可得到答案.【詳解】(1)根據(jù)勾股定理AB=,∵以AB為對(duì)角線的正方形AEBF,∴S正方形=,∵正方形AEBF的邊長(zhǎng)為AE,∴AE2=10,∴AE=,根據(jù)勾股定理可知構(gòu)造橫1豎3或橫3豎1的直角三角形作線段AE、AF,點(diǎn)A向下平移1格,再向左平移3格得點(diǎn)E,點(diǎn)A向右平移1格,再向下平移3格得點(diǎn)F,∴連結(jié)AE,BE,BF,AF,則正方形ABEF作圖如下:(2)根據(jù)勾股定理,∵△CDM為等腰直角三角形,設(shè)CM=DM=x,根據(jù)勾股定理,即,解得,∴CM=DM=,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形作線段CM、DM,點(diǎn)C向右移動(dòng)2格,再向上移動(dòng)1格得點(diǎn)M,連結(jié)CM,D

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論