版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、選擇題1.下列圖形都是由同樣大小的五角星按一定的規(guī)律組成,其中第①個圖形一共有2個五角星,第②個圖形一共有8個五角星,第③個圖形一共有18個五角星,依此類推,則第⑦個圖形中五角星的個數(shù)是()A.98 B.94 C.90 D.862.若,|y|=7,且,則x+y的值為()A.﹣4或10 B.﹣4或﹣10 C.4或10 D.4或﹣103.已知,,是數(shù)軸上三點,點是線段的中點,點,對應(yīng)的實數(shù)分別為和,則點對應(yīng)的實數(shù)是()A. B. C. D.4.設(shè)實數(shù)a,b,c,滿足,且,則的最小值為()A. B. C. D.5.如圖,在數(shù)軸上表示的對應(yīng)點分別為,點關(guān)于點的對稱點為,則點表示的數(shù)為()A. B. C. D.6.按照下圖所示的操作步驟,若輸出y的值為22,則輸入的值x為()A.3 B.-3 C.±3 D.±97.有下列四種說法:①數(shù)軸上有無數(shù)多個表示無理數(shù)的點;②帶根號的數(shù)不一定是無理數(shù);③平方根等于它本身的數(shù)為0和1;④沒有最大的正整數(shù),但有最小的正整數(shù);其中正確的個數(shù)是()A.1 B.2 C.3 D.48.對于任意不相等的兩個實數(shù)a,b,定義運算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值為()A.﹣40 B.﹣32 C.18 D.109.下列說法中,正確的個數(shù)是().()的立方根是;()的算術(shù)平方根是;()的立方根為;()是的平方根.A. B. C. D.10.按如圖所示的運算程序,能使輸出y值為1的是()A. B. C. D.二、填空題11.對于任意有理數(shù)a,b,規(guī)定一種新的運算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.則(﹣2)⊙6的值為_____12.對于這樣的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,則﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值為_____.13.如果表示a、b的實數(shù)的點在數(shù)軸上的位置如圖所示,那么化簡|a﹣b|+的結(jié)果是_____.14.a(chǎn)※b是新規(guī)定的這樣一種運算法則:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,則x的值是_____.15.現(xiàn)定義一種新運算:對任意有理數(shù)a、b,都有a?b=a2﹣b,例如3?2=32﹣2=7,2?(﹣1)=_____.16.觀察等式:,,,,……猜想______.17.如圖,將面積為3的正方形放在數(shù)軸上,以表示實數(shù)1的點為圓心,正方形的邊長為半徑,作圓交數(shù)軸于點、,則點表示的數(shù)為______.18.對于正整數(shù)a,我們規(guī)定:若a為奇數(shù),則;若a為偶數(shù),則例如,,若,,,,,依此規(guī)律進行下去,得到一列數(shù),,,,,,為正整數(shù),則______.19.我們可以用符號f(a)表示代數(shù)式.當a是正整數(shù)時,我們規(guī)定如果a為偶數(shù),f(a)=0.5a;如果a為奇數(shù),f(a)=5a+1.例如:f(20)=10,f(5)=26.設(shè)a1=6,a2=f(a1),a3=f(a2)…;依此規(guī)律進行下去,得到一列數(shù):a1,a2,a3,a4…(n為正整數(shù)),則2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.20.在平面直角坐標系xOy中,對于點P(x,y),如果點Q(x,)的縱坐標滿足,那么稱點Q為點P的“關(guān)聯(lián)點”.請寫出點(3,5)的“關(guān)聯(lián)點”的坐標_______;如果點P(x,y)的關(guān)聯(lián)點Q坐標為(-2,3),則點P的坐標為________.三、解答題21.閱讀材料:求的值.解:設(shè)①,將等式①的兩邊同乘以2,得②,用②-①得,即.即.請仿照此法計算:(1)請直接填寫的值為______;(2)求值;(3)請直接寫出的值.22.對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數(shù)值______.如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次=1,這時候結(jié)果為1.(3)對100連續(xù)求根整數(shù),____次之后結(jié)果為1.(4)只需進行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是____.23.數(shù)學中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運算性質(zhì):.根據(jù)運算性質(zhì)填空,填空:若,則__________;___________;③下表中與數(shù)x對應(yīng)的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.24.我們知道,正整數(shù)按照能否被2整除可以分成兩類:正奇數(shù)和正偶數(shù),小華受此啟發(fā),按照一個正整數(shù)被3除的余數(shù)把正整數(shù)分成了三類:如果一個正整數(shù)被3除余數(shù)為1,則這個正整數(shù)屬于A類,例如1,4,7等;如果一個正整數(shù)被3除余數(shù)為2,則這個正整數(shù)屬于B類,例如2,5,8等;如果一個正整數(shù)被3整除,則這個正整數(shù)屬于C類,例如3,6,9等.(1)2020屬于類(填A(yù),B或C);(2)①從A類數(shù)中任取兩個數(shù),則它們的和屬于類(填A(yù),B或C);②從A、B類數(shù)中任取一數(shù),則它們的和屬于類(填A(yù),B或C);③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們都加起來,則最后的結(jié)果屬于類(填A(yù),B或C);(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),把它們都加起來,若最后的結(jié)果屬于C類,則下列關(guān)于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.25.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:26.我們知道,任意一個正整數(shù)n都可以進行這樣的分解:(p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的完美分解.并規(guī)定:.例如18可以分解成1×18,2×9或3×6,因為18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.(1)F(13)=,F(xiàn)(24)=;(2)如果一個兩位正整數(shù)t,其個位數(shù)字是a,十位數(shù)字為,交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;(3)在(2)所得“和諧數(shù)”中,求F(t)的最大值.27.閱讀材料,解答問題:如果一個四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個四位數(shù)“依賴數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴數(shù)”.(1)請直接寫出最小的四位依賴數(shù);(2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).(3)已知一個大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結(jié)果中,當nq﹣np取得最小時,稱“m=pq+n4”是m的“最小分解”,此時規(guī)定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因為1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色數(shù)”的F(m)的最大值.28.規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”,一般地,把(a≠0)記作a?,讀作“a的圈
n次方”.(初步探究)(1)直接寫出計算結(jié)果:2③=___,()⑤=___;(2)關(guān)于除方,下列說法錯誤的是___A.任何非零數(shù)的圈2次方都等于1;
B.對于任何正整數(shù)n,1?=1;C.3④=4③;
D.負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.(-3)④=___;
5⑥=___;(-)⑩=___.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式等于___;(3)算一算:÷(?)④×(?2)⑤?(?)⑥÷29.規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.例如:因為23=8,所以(2,8)=3.(1)根據(jù)上述規(guī)定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).請你嘗試運用上述這種方法說明下面這個等式成立的理由:(4,5)+(4,6)=(4,30)30.我們知道,任意一個正整數(shù)都可以進行這樣的分解:(,是正整數(shù),且),在的所有這種分解中,如果,兩因數(shù)之差的絕對值最小,我們就稱是的最佳分解,并規(guī)定:.例如:可分解成,或,因為,所以是的最佳分解,所以(1)填空:;;(2)一個兩位正整數(shù)(,,,為正整數(shù)),交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為,求出所有的兩位正整數(shù);并求的最大值;(3)填空:①;②;【參考答案】***試卷處理標記,請不要刪除一、選擇題1.A解析:A【分析】學會尋找規(guī)律,第①個圖2個五角星,第②個圖形一共有8個五角星,第③個圖形一共有18個五角星,那么第n個圖呢,能求出這個即可解得本題?!驹斀狻康冖賯€圖2五角星第②個圖8五角星第③個圖18五角星…第n個圖五角星當n=7時,共有98個五角星?!军c睛】尋找規(guī)律是解決本題的關(guān)鍵所在。2.B解析:B【分析】先根據(jù)平方根、絕對值運算求出的值,再代入求值即可得.【詳解】解:由得:,由得:,,,或,則或,故選:B.【點睛】本題考查了平方根、絕對值等知識點,熟練掌握各運算法則是解題關(guān)鍵.3.D解析:D【分析】由為中點,得到,求出的長,即為的長,從而確定出對應(yīng)的實數(shù)即可.【詳解】解:如圖:根據(jù)題意得:,則點對應(yīng)的實數(shù)是,故選:D.【點睛】此題考查了實數(shù)與數(shù)軸,弄清數(shù)軸上兩點間的距離表示方法是解本題的關(guān)鍵.4.C解析:C【分析】根據(jù)ac<0可知,a,c異號,再根據(jù)a>b>c,以及,即可確定a,?b,c在數(shù)軸上的位置,而|x?a|+|x+b|+|x?c|表示x到a,?b,c三點的距離的和,根據(jù)數(shù)軸即可確定.【詳解】解:∵ac<0,∴a,c異號,∵a>b>c,∴a>0,c<0,又∵,∴b>0,∴a>b>0>c>-b又∵|x?a|+|x+b|+|x?c|表示x到a,?b,c三點的距離的和,當x在c時,|x?a|+|x+b|+|x?c|最小,最小值是a與?b之間的距離,即a+b故選:C.【點睛】本題考查了絕對值函數(shù)的最值問題,解決的關(guān)鍵是根據(jù)條件確定a,?b,c之間的大小關(guān)系,把求式子的最值的問題轉(zhuǎn)化為距離的問題,有一定難度.5.C解析:C【分析】首先根據(jù)表示1、的對應(yīng)點分別為點A、點B可以求出線段AB的長度,然后根據(jù)點B和點C關(guān)于點A對稱,求出AC的長度,最后可以計算出點C的坐標.【詳解】解:∵表示1、的對應(yīng)點分別為點A、點B,∴AB=?1,∵點B關(guān)于點A的對稱點為點C,∴CA=AB,∴點C的坐標為:1?(?1)=2?.故選:C.【點睛】本題考查的知識點為實數(shù)與數(shù)軸,解決本題的關(guān)鍵是求數(shù)軸上兩點間的距離就讓右邊的數(shù)減去左邊的數(shù).知道兩點間的距離,求較小的數(shù),就用較大的數(shù)減去兩點間的距離.6.C解析:C【分析】根據(jù)操作步驟列出方程,然后根據(jù)平方根的定義計算即可得解.【詳解】由題意得:,∴,∵,∴,故選:C.【點睛】此題考查平方根的定義,求一個數(shù)的平方根,利用平方根的定義解方程,正確理解計算的操作步驟得到方程是解題的關(guān)鍵.7.C解析:C【分析】根據(jù)實數(shù)的定義,實數(shù)與數(shù)軸上的點一一對應(yīng),平方根的定義可得答案.【詳解】①數(shù)軸上有無數(shù)多個表示無理數(shù)的點是正確的;②帶根號的數(shù)不一定是無理數(shù)是正確的,如:;③平方根等于它本身的數(shù)只有0,故本小題是錯誤的;④沒有最大的正整數(shù),但有最小的正整數(shù),是正確的.綜上,正確的個數(shù)有3個,故選:C.【點睛】本題主要考查了實數(shù)的有關(guān)概念,正確把握相關(guān)定義是解題關(guān)鍵.8.D解析:D【分析】直接利用題中的新定義給出的運算公式計算得出答案.【詳解】解:(-5)※4=(﹣5)2﹣42+1=10.故選:D.【點睛】本題主要考查了實數(shù)運算,以及定義新運算,正確運用新定義給出的運算公式是解題關(guān)鍵.9.C解析:C【詳解】根據(jù)立方根的意義,可知,故()對;根據(jù)算術(shù)平方根的性質(zhì),可知的算術(shù)平方根是,故()錯;根據(jù)立方根的意義,可知的立方根是,故()對;根據(jù)平方根的意義,可知是的平方根.故()對;故選C.10.D解析:D【分析】逐項代入,尋找正確答案即可.【詳解】解:A選項滿足m≤n,則y=2m+1=3;B選項不滿足m≤n,則y=2n-1=-1;C選項滿足m≤n,則y=2m-1=3;D選項不滿足m≤n,則y=2n-1=1;故答案為D;【點睛】本題考查了根據(jù)條件代數(shù)式求值問題,解答的關(guān)鍵在于根據(jù)條件正確的所代入代數(shù)式及代入得值.二、填空題11.-9【分析】直接利用已知運算法則計算得出答案.【詳解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案為﹣9.【點睛】此題考察新定義形式的有理數(shù)計算,解析:-9【分析】直接利用已知運算法則計算得出答案.【詳解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案為﹣9.【點睛】此題考察新定義形式的有理數(shù)計算,正確理解題意是解題的關(guān)鍵,依據(jù)題意正確列代數(shù)式計算即可.12.-1.【分析】根據(jù)多項式的乘法得出字母的值,進而代入解答即可.【詳解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根據(jù)多項式的乘法得出字母的值,進而代入解答即可.【詳解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案為:﹣1【點睛】本題考查了代數(shù)式求值,解題的關(guān)鍵是根據(jù)題意求得a0,a1,a2,a3,a4,a5的值.13.﹣2b【詳解】由題意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案為﹣2b.點睛:本題主要考查了二次根式和絕對解析:﹣2b【詳解】由題意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案為﹣2b.點睛:本題主要考查了二次根式和絕對值的性質(zhì)與化簡.特別因為a.b都是數(shù)軸上的實數(shù),注意符號的變換.14.4【解析】根據(jù)題意可得(﹣2)※x=﹣2+2x,進而可得方程﹣2+2x=2+x,解得:x=4.故答案為:4.點睛:此題是一個閱讀理解型的新運算法則題,解題關(guān)鍵是明確新運算法則的特點,然后直接根解析:4【解析】根據(jù)題意可得(﹣2)※x=﹣2+2x,進而可得方程﹣2+2x=2+x,解得:x=4.故答案為:4.點睛:此題是一個閱讀理解型的新運算法則題,解題關(guān)鍵是明確新運算法則的特點,然后直接根據(jù)新定義的代數(shù)式計算即可.15.5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.解析:5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.16.【分析】觀察給出的等式得到:從1開始的連續(xù)2個奇數(shù)和是22,連續(xù)3個奇數(shù)和是32,連續(xù)4個,5個奇數(shù)和分別為42,52…根據(jù)規(guī)律即可猜想從1開始的連續(xù)n個奇數(shù)的和,據(jù)此可解.【詳解】解:∵從解析:【分析】觀察給出的等式得到:從1開始的連續(xù)2個奇數(shù)和是22,連續(xù)3個奇數(shù)和是32,連續(xù)4個,5個奇數(shù)和分別為42,52…根據(jù)規(guī)律即可猜想從1開始的連續(xù)n個奇數(shù)的和,據(jù)此可解.【詳解】解:∵從1開始的連續(xù)2個奇數(shù)和是22,連續(xù)3個奇數(shù)和是32,連續(xù)4個,5個奇數(shù)和分別為42,52…;∴從1開始的連續(xù)n個奇數(shù)的和:1+3+5+7+…+(2n-1)=n2;
∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【點睛】此題主要考查學生對規(guī)律型題的掌握,關(guān)鍵是要對給出的等式進行仔細觀察分析,發(fā)現(xiàn)規(guī)律,根據(jù)規(guī)律解題.17..【分析】利用正方形的面積公式求出正方形的邊長,再求出原點到點A的距離(即點A的絕對值),然后根據(jù)數(shù)軸上原點左邊的數(shù)為負數(shù)即可求出點A表示的數(shù).【詳解】∵正方形的面積為3,∴正方形的邊長為解析:.【分析】利用正方形的面積公式求出正方形的邊長,再求出原點到點A的距離(即點A的絕對值),然后根據(jù)數(shù)軸上原點左邊的數(shù)為負數(shù)即可求出點A表示的數(shù).【詳解】∵正方形的面積為3,∴正方形的邊長為,∴A點距離0的距離為∴點A表示的數(shù)為.【點睛】本題考查實數(shù)與數(shù)軸,解決本題時需注意圓的半徑即是點A到1的距離,而求A點表示的數(shù)時,需求出A點到原點的距離即A點的絕對值,再根據(jù)絕對值的性質(zhì)和數(shù)軸上點的特征求解.18.4728【分析】先求出,,,,尋找規(guī)律后即可解決問題.【詳解】由題意,,,,,,,,從開始,出現(xiàn)循環(huán):4,2,1,,,,故答案為4728.【點睛】本題考查了規(guī)律型——數(shù)字的變解析:4728【分析】先求出,,,,尋找規(guī)律后即可解決問題.【詳解】由題意,,,,,,,,從開始,出現(xiàn)循環(huán):4,2,1,,,,故答案為4728.【點睛】本題考查了規(guī)律型——數(shù)字的變化類問題,解題的關(guān)鍵是從一般到特殊,尋找規(guī)律,利用規(guī)律解決問題.19.7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結(jié)論解析:7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結(jié)論.【詳解】解:觀察,發(fā)現(xiàn)規(guī)律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴數(shù)列a1,a2,a3,a4…(n為正整數(shù))每7個數(shù)一循環(huán),∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案為7.【點睛】本題考查了規(guī)律型中的數(shù)字的變化類以及代數(shù)式求值,解題的關(guān)鍵是根據(jù)數(shù)的變化找出變換規(guī)律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0來解決問題.20.(3,2);(-2,1)或(-2,-5).【分析】根據(jù)關(guān)聯(lián)點的定義,可得答案.【詳解】解:∵3<5,根據(jù)關(guān)聯(lián)點的定義,∴y′=5-3=2,
點(3,5)的“關(guān)聯(lián)點”的坐標(解析:(3,2);(-2,1)或(-2,-5).【分析】根據(jù)關(guān)聯(lián)點的定義,可得答案.【詳解】解:∵3<5,根據(jù)關(guān)聯(lián)點的定義,∴y′=5-3=2,點(3,5)的“關(guān)聯(lián)點”的坐標(3,2);∵點P(x,y)的關(guān)聯(lián)點Q坐標為(-2,3),∴y′=y-x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴點P的坐標為(-2,1)或(-2,-5).故答案為:(3,2);(-2,1)或(-2,-5).【點睛】本題主要考查了點的坐標,理清“關(guān)聯(lián)點”的定義是解答本題的關(guān)鍵.三、解答題21.(1)15;(2);(3).【分析】(1)先計算乘方,即可求出答案;(2)根據(jù)題目中的運算法則進行計算,即可求出答案;(3)根據(jù)題目中的運算法則進行計算,即可求出答案;【詳解】解:(1);故答案為:15;(2)設(shè)①,把等式①兩邊同時乘以5,得②,由②①,得:,∴,∴;(3)設(shè)①,把等式①乘以10,得:②,把①+②,得:,∴,∴,∴.【點睛】本題考查了數(shù)字的變化規(guī)律,熟練掌握運算法則,熟練運用有理數(shù)乘法,以及運用消項的思想是解題的關(guān)鍵.22.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結(jié)果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對120進行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;(4)最大的正整數(shù)是255,根據(jù)操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點睛】本題考查了估算無理數(shù)的大小的應(yīng)用,主要考查學生的閱讀能力和猜想能力,同時也考查了一個數(shù)的平方數(shù)的計算能力.23.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據(jù)定義可得:f(10b)=b,即可求得結(jié)論;②根據(jù)運算性質(zhì):f(mn)=f(m)+f(n),f()=f(n)-f(m)進行計算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據(jù)5=,假設(shè)f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據(jù)定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據(jù)運算性質(zhì),得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對應(yīng)值是錯誤的,應(yīng)改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點睛】本題考查了冪的應(yīng)用,新定義運算等,解題的關(guān)鍵是深刻理解所給出的定義或規(guī)則,將它們轉(zhuǎn)化為我們所熟悉的運算.24.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結(jié)合計算結(jié)果即可進行判斷;(2)①從A類數(shù)中任取兩個數(shù)進行計算,即可求解;②從A、B兩類數(shù)中任取兩個數(shù)進行計算,即可求解;③根據(jù)題意,從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,再除以3,即可得到答案;(3)根據(jù)m,n的余數(shù)之和,舉例,觀察即可判斷.【詳解】解:(1)根據(jù)題意,∵,∴2020被3除余數(shù)為1,屬于A類;故答案為:A.(2)①從A類數(shù)中任取兩個數(shù),如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數(shù)的和被3除余數(shù)為2,則它們的和屬于B類;②從A、B類數(shù)中任取一數(shù),與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數(shù)中任取一數(shù),則它們的和屬于C類;③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,則,∴,∴余數(shù)為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),余數(shù)之和為:m×1+n×2=m+2n,∵最后的結(jié)果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現(xiàn)若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應(yīng)用和有理數(shù)的除法,解題的關(guān)鍵是熟練掌握新定義進行解答.25.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.26.(1),(2)所以和諧數(shù)為15,26,37,48,59;(3)F(t)的最大值是.【分析】(1)根據(jù)題意,按照新定義的法則計算即可.(2)根據(jù)新定義的”和諧數(shù)”定義,將數(shù)用a,b表示列出式子解出即可.(3)根據(jù)(2)中計算的結(jié)果求出最大即可.【詳解】解:(1)F(13)=,F(xiàn)(24)=;(2)原兩位數(shù)可表示為新兩位數(shù)可表示為∴∴∴∴∴(且b為正整數(shù))∴b=2,a=5;b=3,a=6,b=4,a=7,b=5,a=8b=6,a=9所以和諧數(shù)為15,26,37,48,59(3)所有“和諧數(shù)”中,F(xiàn)(t)的最大值是.【點睛】本題為新定義的題型,關(guān)鍵在于讀懂題意,按照規(guī)定解題.27.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能為0,最小只能取1;根據(jù)題目得出相應(yīng)的公式:十位=2×千位﹣百位,個位=2×千位+百位,分別求出十位和個位,即可求出最小的四位依賴數(shù);(2)設(shè)千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),依據(jù)題意列出代數(shù)式然后表示為7的倍數(shù)加余數(shù)形式,然后求出x、y即可,從而求出所有特色數(shù);(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,故將(2)中特色數(shù)分解,找到最小分解,然后將n、p、q的值代入F(m)=,再比較大小即可.【詳解】解:(1)由題意可知:千位一定是1,百位取0,十位上的數(shù)字為:2×1-0=2,個位上的數(shù)字為:2×1+0=2則最小的四位依賴數(shù)是1022;(2)設(shè)千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),根據(jù)題意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非負整數(shù))∴此方程的一位整數(shù)解為:x=4,y=5(此時2x+y>10,故舍去);x=3,y=7(此時2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此時2x﹣y<0,故舍去);∴特色數(shù)是3066,2226.(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,由(2)可知:特色數(shù)有3066和2226兩個,對于3066=613×5+14=61×50+24∵1×613-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣東教師招聘碩士免筆試及答案
- 2025年協(xié)警入職筆試面試及答案
- 2025年山東成武縣事業(yè)單位考試及答案
- 2025年重慶去城口事業(yè)單位考試及答案
- 2025年鎮(zhèn)江市事業(yè)單位考試面試及答案
- 2025年雄安集團筆試及答案
- 2025年成都高職院校教師筆試及答案
- 2025年省考事業(yè)單位考試題及答案
- 2025年長白縣省直公務(wù)員筆試及答案
- 2026年淮南安徽理工大學科技園技術(shù)經(jīng)理人招募筆試參考題庫及答案解析
- 小區(qū)房屋維修基金申請范文
- 武漢市江岸區(qū)2022-2023學年七年級上學期期末地理試題【帶答案】
- 中職高二家長會課件
- 復(fù)方蒲公英注射液在痤瘡中的應(yīng)用研究
- 自動駕駛系統(tǒng)關(guān)鍵技術(shù)
- 淮安市2023-2024學年七年級上學期期末歷史試卷(含答案解析)
- 家長要求學校換老師的申請書
- 闌尾腫瘤-課件
- 正式員工派遣單
- 新員工入職申請表模板
- 中外新聞事業(yè)史課程教學大綱
評論
0/150
提交評論