2025年江蘇省高郵市中考數(shù)學(xué)考前沖刺練習(xí)【全優(yōu)】附答案詳解_第1頁
2025年江蘇省高郵市中考數(shù)學(xué)考前沖刺練習(xí)【全優(yōu)】附答案詳解_第2頁
2025年江蘇省高郵市中考數(shù)學(xué)考前沖刺練習(xí)【全優(yōu)】附答案詳解_第3頁
2025年江蘇省高郵市中考數(shù)學(xué)考前沖刺練習(xí)【全優(yōu)】附答案詳解_第4頁
2025年江蘇省高郵市中考數(shù)學(xué)考前沖刺練習(xí)【全優(yōu)】附答案詳解_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省高郵市中考數(shù)學(xué)考前沖刺練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、在一個(gè)不透明的盒子中裝有紅球、白球、黑球共40個(gè),這些球除顏色外無其他差別,在看不見球的條件下,隨機(jī)從盒子中摸出一個(gè)球記錄顏色后放回.經(jīng)過多次試驗(yàn),發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個(gè)數(shù)約為()A.12 B.15 C.18 D.232、同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.3、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點(diǎn)C為優(yōu)弧上的一個(gè)動(dòng)點(diǎn),則面積的最大值是()A. B. C. D.4、如圖,將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得到△OCD,若∠A的度數(shù)為110°,∠D的度數(shù)為40°,則∠AOD的度數(shù)是()A.50° B.60° C.40° D.30°5、下列事件中,是必然事件的是()A.實(shí)心鐵球投入水中會(huì)沉入水底B.車輛隨機(jī)到達(dá)一個(gè)路口,遇到紅燈C.打開電視,正在播放《大國(guó)工匠》D.拋擲一枚硬幣,正面向上二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,在中,,,點(diǎn)D,E分別為,上的點(diǎn),且.將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)B,A,E在同一條直線上,連接,.下列結(jié)論正確的是(

)A. B. C. D.旋轉(zhuǎn)角為2、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對(duì)應(yīng)值如下表:x…-2-1012……tm22n…已知.則下列結(jié)論中,正確的是(

)A. B.和是方程的兩個(gè)根C. D.(s取任意實(shí)數(shù))3、如果一種變換是將拋物線向右平移2個(gè)單位或向上平移1個(gè)單位,我們把這種變換稱為拋物線的簡(jiǎn)單變換.已知拋物線經(jīng)過兩次簡(jiǎn)單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+174、如圖,PA、PB是的切線,切點(diǎn)分別為A、B,BC是的直徑,PO交于E點(diǎn),連接AB交PO于F,連接CE交AB于D點(diǎn).下列結(jié)論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.5、如圖,AB是的直徑,C是上一點(diǎn),E是△ABC的內(nèi)心,,延長(zhǎng)BE交于點(diǎn)F,連接CF,AF.則下列結(jié)論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、定義:由a,b構(gòu)造的二次函數(shù)叫做一次函數(shù)y=ax+b的“滋生函數(shù)”,一次函數(shù)y=ax+b叫做二次函數(shù)的“本源函數(shù)”(a,b為常數(shù),且).若一次函數(shù)y=ax+b的“滋生函數(shù)”是,那么二次函數(shù)的“本源函數(shù)”是______.2、如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.3、某批青稞種子在相同條件下發(fā)芽試驗(yàn)結(jié)果如下表:每次試驗(yàn)粒數(shù)501003004006001000發(fā)芽頻數(shù)4796284380571948估計(jì)這批青稞發(fā)芽的概率是___________.(結(jié)果保留到0.01)4、邊長(zhǎng)相等、各內(nèi)角均為120°的六邊形ABCDEF在直角坐標(biāo)系內(nèi)的位置如圖所示,,點(diǎn)B在原點(diǎn),把六邊形ABCDEF沿x軸正半軸繞頂點(diǎn)按順時(shí)針方向,從點(diǎn)B開始逐次連續(xù)旋轉(zhuǎn),每次旋轉(zhuǎn)60°,經(jīng)過2021次旋轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是_____________.5、小明和小強(qiáng)玩“石頭、剪刀、布”游戲,按照“石頭勝剪刀,剪刀勝布,布勝石頭,相同算平局”的規(guī)則,兩人隨機(jī)出手一次,平局的概率為______.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、五一期間,小明跟父母去烏鎮(zhèn)旅游,欣賞烏鎮(zhèn)水鄉(xiāng)的美景.如圖,當(dāng)小明走到烏鎮(zhèn)古橋的C處時(shí),發(fā)現(xiàn)遠(yuǎn)處有一瞍船勻速行駛過來,當(dāng)船行駛到A處時(shí),小明測(cè)得船頭的俯角為30°,同時(shí)小明開始計(jì)時(shí),船在航行過小明所在的橋之后,繼續(xù)向前航行到達(dá)B處,此時(shí)測(cè)得船尾的俯角為45°;從小明開始計(jì)時(shí)到船行駛至B處,共用時(shí)15min;已知小明所在位置距離水面6m,船長(zhǎng)3m,船到水面的距離忽略不計(jì),請(qǐng)你幫助小明計(jì)算一下船的航行速度(結(jié)果保留根號(hào))2、計(jì)算:(1)(2)五、解答題(4小題,每小題10分,共計(jì)40分)1、正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,E是⊙O上的一點(diǎn).(1)如圖①,若點(diǎn)E在上,F(xiàn)是DE上的一點(diǎn),DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請(qǐng)說明理由;(3)如圖②,若點(diǎn)E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長(zhǎng).2、一個(gè)不透明的口袋中有四個(gè)分別標(biāo)號(hào)為1,2,3,4的完全相同的小球,從中隨機(jī)摸取兩個(gè)小球.(1)請(qǐng)列舉出所有可能結(jié)果;(2)求取出的兩個(gè)小球標(biāo)號(hào)和等于5的概率.3、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=04、已知m是方程的一個(gè)根,試求的值.-參考答案-一、單選題1、A【分析】由題意可設(shè)盒子中紅球的個(gè)數(shù)x,則盒子中球的總個(gè)數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關(guān)系可得出摸到紅球的概率為30%,再根據(jù)概率的計(jì)算公式計(jì)算即可.【詳解】解:設(shè)盒子中紅球的個(gè)數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個(gè)數(shù)是12,故選:A.【點(diǎn)睛】本題主要考查了利用頻率估計(jì)概率以及概率求法的運(yùn)用,利用概率的求法估計(jì)總體個(gè)數(shù),利用如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關(guān)系生:一般地,在大量的重復(fù)試驗(yàn)中,隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率會(huì)穩(wěn)定于某個(gè)常數(shù)p,我們稱事件A發(fā)生的概率為p.2、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點(diǎn)睛】本題考查了列舉法求概率的知識(shí).此題比較簡(jiǎn)單,注意在利用列舉法求解時(shí),要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.3、C【分析】如圖,過點(diǎn)C作CT⊥AB于點(diǎn)T,過點(diǎn)O作OH⊥AB于點(diǎn)H,交⊙O于點(diǎn)K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結(jié)論.【詳解】解:如圖,過點(diǎn)C作CT⊥AB于點(diǎn)T,過點(diǎn)O作OH⊥AB于點(diǎn)H,交⊙O于點(diǎn)K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點(diǎn)睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識(shí),解題的關(guān)鍵是求出CT的最大值,屬于中考??碱}型.4、A【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)求解再利用三角形的內(nèi)角和定理求解再利用角的和差關(guān)系可得答案.【詳解】解:將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得到△OCD,∠A的度數(shù)為110°,∠D的度數(shù)為40°,故選A【點(diǎn)睛】本題考查的是三角形的內(nèi)角和定理的應(yīng)用,旋轉(zhuǎn)的性質(zhì),掌握“旋轉(zhuǎn)前后的對(duì)應(yīng)角相等”是解本題的關(guān)鍵.5、A【分析】根據(jù)必然事件、不可能事件、隨機(jī)事件的概念進(jìn)行判斷即可.【詳解】解:A、實(shí)心鐵球投入水中會(huì)沉入水底,是必然事件,該選項(xiàng)符合題意;B、車輛隨機(jī)到達(dá)一個(gè)路口,遇到紅燈,是隨機(jī)事件,該選項(xiàng)不合題意;C、打開電視,正在播放《大國(guó)工匠》,是隨機(jī)事件,該選項(xiàng)不合題意;D、拋擲一枚硬幣,正面向上,是隨機(jī)事件,該選項(xiàng)不合題意;故選:A.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、多選題1、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)B、A、E在同一條直線上,可得旋轉(zhuǎn)角為60°,故D錯(cuò)誤;由DE∥BC,易證AD=AE,得出BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;證明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正確;即可得出結(jié)果.【詳解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)B、A、E在同一條直線上,則旋轉(zhuǎn)角為:180°120°=60°,故D錯(cuò)誤;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正確;故選:ABC.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的判定與性質(zhì)、平行線的性質(zhì)等知識(shí);熟練掌握旋轉(zhuǎn)的性質(zhì)與等腰三角形的性質(zhì)是解題的關(guān)鍵.2、BC【解析】【分析】由表中數(shù)據(jù),結(jié)合二次函數(shù)的對(duì)稱性,可知,二次函數(shù)的對(duì)稱軸為,結(jié)合拋物線對(duì)稱軸為:,得出,由,,結(jié)合二次函數(shù)圖象性質(zhì),逐一分析各個(gè)選項(xiàng),即可作出相應(yīng)的判斷.【詳解】解:由表格數(shù)據(jù)可知,當(dāng)時(shí),,將點(diǎn)代入中,可得.由表格數(shù)據(jù)可知,當(dāng)時(shí),;當(dāng)時(shí),;即拋物線對(duì)稱軸為:,∵拋物線對(duì)稱軸為:,∴,化簡(jiǎn)得,.∵,,∴拋物線解析式化為,.將點(diǎn)代入中,化簡(jiǎn)得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項(xiàng)說法錯(cuò)誤,不符合題意;∵二次函數(shù)對(duì)稱軸為,∴和時(shí),對(duì)應(yīng)的函數(shù)值相等,∵時(shí),對(duì)應(yīng)函數(shù)值為,∴和是方程的兩個(gè)根,故B選項(xiàng)說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點(diǎn)和,將點(diǎn)和分別代入二次函數(shù)解析式中,可得,,,故,C選項(xiàng)說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實(shí)數(shù),故D選項(xiàng)說法錯(cuò)誤,不符合題意;故選:BC.【考點(diǎn)】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.3、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個(gè)單位得到y(tǒng)=x2,再向上平移1個(gè)單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個(gè)單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個(gè)單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個(gè)單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個(gè)單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個(gè)單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.4、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進(jìn)而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進(jìn)而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進(jìn)而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯(cuò)誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點(diǎn)】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識(shí),解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個(gè)知識(shí)點(diǎn)之間的融會(huì)貫通.5、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進(jìn)一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項(xiàng)B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項(xiàng)C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項(xiàng)A錯(cuò)誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項(xiàng)D正確,故選:BCD【考點(diǎn)】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識(shí),證明△ABC是等腰直角三角形是解題的關(guān)鍵.三、填空題1、【解析】【分析】由“滋生函數(shù)”和“本源函數(shù)”的定義,運(yùn)用待定系數(shù)法求出函數(shù)的本源函數(shù).【詳解】解:由題意得解得∴函數(shù)的本源函數(shù)是.故答案為:.【考點(diǎn)】本題考查新定義運(yùn)算下的一次函數(shù)和二次函數(shù)的應(yīng)用,解題關(guān)鍵是充分理解新定義“本源函數(shù)”.2、【解析】【分析】根據(jù)已知建立平面直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過把代入拋物線解析式得出水面寬度,即可得出答案.【詳解】建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),拋物線以y軸為對(duì)稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半2米,拋物線頂點(diǎn)C坐標(biāo)為通過以上條件可設(shè)頂點(diǎn)式,其中可通過代入A點(diǎn)坐標(biāo)代入到拋物線解析式得出:所以拋物線解析式為當(dāng)水面下降2米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:當(dāng)時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線與拋物線相交的兩點(diǎn)之間的距離,可以通過把代入拋物線解析式得出:解得:

所以水面寬度增加到米,比原先的寬度當(dāng)然是增加了故答案是:【考點(diǎn)】考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標(biāo)系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵.3、0.95【解析】【分析】利用大量重復(fù)試驗(yàn)下事件發(fā)生的頻率可以估計(jì)該事件發(fā)生的概率直接回答即可.【詳解】觀察表格得到這批青稞發(fā)芽的頻率穩(wěn)定在0.95附近,則這批青稞發(fā)芽的概率的估計(jì)值是0.95,故答案為:0.95.【考點(diǎn)】此題考查了利用頻率估計(jì)概率,從表格中的數(shù)據(jù)確定出這種油菜籽發(fā)芽的頻率是解本題的關(guān)鍵.4、【分析】根據(jù)旋轉(zhuǎn)找出規(guī)律后再確定坐標(biāo).【詳解】∵正六邊形ABCDEF沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個(gè)循環(huán)組循環(huán),∵,∴經(jīng)過2021次翻轉(zhuǎn)為第337循環(huán)組的第5次翻轉(zhuǎn),點(diǎn)B在開始時(shí)點(diǎn)C的位置,∵,∴,∴翻轉(zhuǎn)前進(jìn)的距離為:,如圖,過點(diǎn)B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點(diǎn)B的坐標(biāo)為.故答案為:.【點(diǎn)睛】題考查旋轉(zhuǎn)的性質(zhì)與正多邊形,由題意找出規(guī)律是解題的關(guān)鍵.5、【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與兩人平局的情況,再利用概率公式即可求得答案.【詳解】解:小明和小強(qiáng)玩“石頭、剪刀、布”游戲,所有可能出現(xiàn)的結(jié)果列表如下:∵由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).∴小明和小強(qiáng)平局的概率為:,故答案為:.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.四、簡(jiǎn)答題1、船的航行速度為m/min.【解析】【分析】連接AB,過點(diǎn)C作CD⊥AB交于點(diǎn)D,根據(jù)題意得出,,CD=6米,利用銳角三角函數(shù)得出米,米,結(jié)合圖形及速度求法即可得出結(jié)果.【詳解】解:如圖所示,連接AB,過點(diǎn)C作CD⊥AB交于點(diǎn)D,根據(jù)題意可得:,,CD=6米,在中,(米),在中,米,∴米,∵船長(zhǎng)為3米,∴船航行距離為:米,∴船的速度為:,答:船的航行速度為m/min.【考點(diǎn)】本題主要考查銳角三角函數(shù)的實(shí)際應(yīng)用,理解題意,構(gòu)建直角三角形是解題關(guān)鍵.2、(1);(2)2.【解析】【分析】(1)先去絕對(duì)值,零指數(shù)冪,負(fù)指數(shù)冪,二次根式化簡(jiǎn),再合并同類項(xiàng)即可;(2)先計(jì)算負(fù)指數(shù)冪,代入特殊角三角函數(shù)值,二次根式化簡(jiǎn),再計(jì)算乘法,合并同類項(xiàng)即可.【詳解】解:(1),=,=;(2)=,=,=2.【考點(diǎn)】本題考查特殊角三角函數(shù)值,二次根式,負(fù)指數(shù)冪,零指數(shù)冪,絕對(duì)值的混合運(yùn)算,掌握運(yùn)算法則是解題關(guān)鍵.五、解答題1、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點(diǎn)共線;根據(jù)BC=CD,得,從而推導(dǎo)得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計(jì)算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點(diǎn)共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點(diǎn)】本題考查了正方形、圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的知識(shí);解題的關(guān)鍵是熟練掌握正方形、圓周角、正多邊形與圓、等腰三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論