版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
河南省衛(wèi)輝市中考數(shù)學檢測卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、關(guān)于函數(shù),下列說法:①函數(shù)的最小值為1;②函數(shù)圖象的對稱軸為直線x=3;③當x≥0時,y隨x的增大而增大;④當x≤0時,y隨x的增大而減小,其中正確的有()個.A.1 B.2 C.3 D.42、如圖,,是上直徑兩側(cè)的兩點.設,則(
)A. B. C. D.3、當0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,44、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°5、一元二次方程(m+1)x2-2mx+m2-1=0有兩個異號根,則m的取值范圍是(
)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<1二、多選題(5小題,每小題3分,共計15分)1、已知拋物線上部分點的橫坐標x與縱坐標y的對應值如表所示,對于下列結(jié)論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當時,x的取值范圍是或.正確的是(
)A.① B.② C.③ D.④2、關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中正確的命題是()A.當c=0時,函數(shù)的圖象經(jīng)過原點;B.當c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;C.函數(shù)圖象最高點的縱坐標是;D.當b=0時,函數(shù)的圖象關(guān)于y軸對稱.3、如圖,拋物線過點,對稱軸是直線.下列結(jié)論正確的是(
)A.B.C.若關(guān)于x的方程有實數(shù)根,則D.若和是拋物線上的兩點,則當時,4、對于二次函數(shù)y=﹣2(x﹣1)(x+3),下列說法不正確的是()A.圖象的開口向上B.圖象與y軸交點坐標是(0,6)C.當x>﹣1時,y隨x的增大而增大D.圖象的對稱軸是直線x=15、如圖,是半圓的直徑,半徑于點,為半圓上一點,,與交于點,連接,,給出以下四個結(jié)論,其中正確的是(
)A.平分 B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.2、小明和小強玩“石頭、剪刀、布”游戲,按照“石頭勝剪刀,剪刀勝布,布勝石頭,相同算平局”的規(guī)則,兩人隨機出手一次,平局的概率為______.3、如圖,已知⊙O的半徑為2,弦AB的長度為2,點C是⊙O上一動點若△ABC為等腰三角形,則BC2為_______.4、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設道路的寬為xm,則根據(jù)題意,可列方程為_______.5、如圖,在中,的半徑為點是邊上的動點,過點作的一條切線(其中點為切點),則線段長度的最小值為____.四、簡答題(2小題,每小題10分,共計20分)1、如圖,直角三角形中,,為中點,將繞點旋轉(zhuǎn)得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運動,過點作直線,使.(1)當點運動2秒時,另一動點也從出發(fā)沿的路線運動,且在上以每秒1的速度勻速運動,在上以每秒2的速度勻速運動,過作直線使,設點的運動時間為秒,直線與截四邊形所得圖形的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.(2)當點開始運動的同時,另一動點從處出發(fā)沿的路線運動,且在上以每秒的速度勻速運動,在上以每秒2的速度勻度運動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運動的時間的值,若不存在請說明理由.2、2022年冬奧會在北京召開,某網(wǎng)絡經(jīng)銷商購進了一批以冬奧會為主題的文化衫進行銷售,文化衫的進價為每件30元,當銷售單價定為70元時,每天可售出20件,每銷售一件需繳納網(wǎng)絡平臺管理費2元,為了擴大銷售,增加盈利,決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn):銷售單價每降低1元,則每天可多售出2件(銷售單價不低于進價),若設這款文化衫的銷售單價為x(元),每天的銷售量為y(件).(1)求每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)當銷售單價為多少元時,銷售這款文化衫每天所獲得的利潤最大,最大利潤為多少元?五、解答題(4小題,每小題10分,共計40分)1、如圖,和中,,,,連接,點M,N,P分別是的中點.(1)請你判斷的形狀,并證明你的結(jié)論.(2)將繞點A旋轉(zhuǎn),若,請直接寫出周長的最大值與最小值.2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?3、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計劃帶弟弟出去玩,放假前他收集了太原動物園、晉祠公園、森林公園、汾河濕地公園四個景點的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機抽取一張(不放回),求兩人抽到動物園和森林公園的概率.4、已知,P是直線AB上一動點(不與A,B重合),以P為直角頂點作等腰直角三角形PBD,點E是直線AD與△PBD的外接圓除點D以外的另一個交點,直線BE與直線PD相交于點F.(1)如圖,當點P在線段AB上運動時,若∠DBE=30°,PB=2,求DE的長;(2)當點P在射線AB上運動時,試探求線段AB,PB,PF之間的數(shù)量關(guān)系,并給出證明.-參考答案-一、單選題1、B【解析】【分析】根據(jù)所給函數(shù)的頂點式得出函數(shù)圖象的性質(zhì)從而判斷選項的正確性.【詳解】解:∵,∴該函數(shù)圖象開口向上,有最小值1,故①正確;函數(shù)圖象的對稱軸為直線,故②錯誤;當x≥0時,y隨x的增大而增大,故③正確;當x≤﹣3時,y隨x的增大而減小,當﹣3≤x≤0時,y隨x的增大而增大,故④錯誤.故選:B.【考點】本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是能夠根據(jù)函數(shù)解析式分析出函數(shù)圖象的性質(zhì).2、D【解析】【分析】先利用直徑所對的圓周角是直角得到∠ACB=90°,從而求出∠BAC,再利用同弧所對的圓周角相等即可求出∠BDC.【詳解】解:∵C,D是⊙O上直徑AB兩側(cè)的兩點,∴∠ACB=90°,∵∠ABC=25°,∴∠BAC=90°-25°=65°,∴∠BDC=∠BAC=65°,故選:D.【考點】本題考查了圓周角定理的推論,即直徑所對的圓周角是90°和同弧或等弧所對的圓周角相等,解決本題的關(guān)鍵是牢記相關(guān)概念與推論,本題蘊含了屬性結(jié)合的思想方法.3、A【解析】【分析】利用配方法把原方程化為頂點式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點式是解答本題的關(guān)鍵.4、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、B【解析】【分析】設方程兩根為x1,x2,根據(jù)一元二次方程的定義和根與系數(shù)的關(guān)系求解即可.【詳解】解:設方程兩根為x1,x2,根據(jù)題意得m+1≠0,,解得m<1且m≠-1,∵x1?x2<0,∴Δ>0,∴m的取值范圍為m<1且m≠-1.故選:B.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.也考查了一元二次方程根與系數(shù)的關(guān)系.二、多選題1、CD【解析】【分析】根據(jù)表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標為(0,0)(2,0)據(jù)此可判斷①②③,根據(jù)與x軸交點坐標結(jié)合開口方向可判斷④.【詳解】解:從表格可以看出,函數(shù)的對稱軸是直線x=1,頂點坐標為(1,﹣1),此時有最小值∴函數(shù)與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數(shù)的圖象和性質(zhì).解題的關(guān)鍵在于根據(jù)表格獲取正確的信息.2、ABD【解析】【分析】根據(jù)c與0的關(guān)系判斷二次函數(shù)y=ax2+bx+c與y軸交點的情況;根據(jù)頂點坐標與拋物線開口方向判斷函數(shù)的最值;根據(jù)函數(shù)y=ax2+c的圖象與y=ax2圖象相同,判斷函數(shù)y=ax2+c的圖象對稱軸.【詳解】解:A.c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當c=0時,函數(shù)的圖象經(jīng)過原點;B.c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;C.當a<0時,函數(shù)圖象最高點的縱坐標是;當a>0時,函數(shù)圖象最低點的縱坐標是;由于a值不定,故無法判斷最高點或最低點;D.當b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當b=0時,函數(shù)的圖象關(guān)于y軸對稱.故選:ABD.【考點】二次函數(shù)y=ax2+bx+c最值,掌握當a<0時,函數(shù)的最大值是;當a>0時,函數(shù)的最小值是是解題關(guān)鍵.3、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側(cè),∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關(guān)于x的方程有實數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.4、ACD【解析】【分析】將函數(shù)解析式變成頂點式,依照二次函數(shù)的性質(zhì)對比四個選項即可得出結(jié)論.【詳解】解:A、y=-2(x-1)(x+3),∵a=-2<0,∴圖象的開口向下,故本選項錯誤,符合題意;B、y=-2(x-1)(x+3)=-2x2-4x+6,當x=0時,y=6,即圖象與y軸的交點坐標是(0,6),故本選項正確,不符合題意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即當x>-1,y隨x的增大而減少,故本選項錯誤,符合題意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即圖象的對稱軸是直線x=-1,故本選項錯誤,符合題意.故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是將二次函數(shù)關(guān)系式變?yōu)轫旤c式,聯(lián)系二次函數(shù)性質(zhì)對比四個選項即可.5、ABCD【解析】【分析】根據(jù)圓周角定理即可得出平分,證明全等即可得到,根據(jù)即可得到,即可得到;【詳解】∵是半圓的直徑,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正確;又∵,,∴,∴,故B正確;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正確;∴,∴,故D正確;故選ABCD.【考點】本題主要考查了圓周角定理、直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì),準確計算是解題的關(guān)鍵.三、填空題1、12【分析】如圖,連接BC,AO,作點P關(guān)于AB的對稱點M,作點P關(guān)于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關(guān)于AB的對稱點M,作點P關(guān)于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關(guān)鍵是學會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.2、【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與兩人平局的情況,再利用概率公式即可求得答案.【詳解】解:小明和小強玩“石頭、剪刀、布”游戲,所有可能出現(xiàn)的結(jié)果列表如下:∵由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).∴小明和小強平局的概率為:,故答案為:.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、4或12或【分析】分三種情況討論:當AB=BC時、當AB=AC時、當AC=BC時,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當AB=BC時,BC=2,故BC2=4;如圖2,當AB=AC=2時,過A作AD⊥BC于D,連接OC,∴BD=CD,設OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當AC=BC時,則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.4、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構(gòu)成一個矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關(guān)于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點】本題考查了一元二次方程的應用,關(guān)鍵將四個矩形用恰當?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P(guān)系.5、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當OP⊥AB時,PQ最短;在中運用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長,然后再運用等面積法求得OP的長,最后運用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當OP⊥AB時,如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識點,此正確作出輔助線、根據(jù)勾股定理確定當PO⊥AB時、線段PQ最短是解答本題的關(guān)鍵.四、簡答題1、(1),S的最大值為;(2)存在,m的值為或或或.【解析】【分析】(1)分、和三種情況分別表示出有關(guān)線段求得兩個變量之間的函數(shù)關(guān)系即可.(2)分兩種情形:①如圖中,由題意點在上運動的時間與點在上運動的時間相等,即.當時,當時,當時,分別構(gòu)建方程求解即可.②如圖中,作于.首先證明,根據(jù)構(gòu)建方程即可解決問題.【詳解】解:(1)如圖中,當時,點與點都在上運動,,,,,,,,,,.此時兩平行線截平行四邊形的面積為.如圖中,當時,點在上運動,點仍在上運動.則,,,,,,,而,故此時兩平行線截平行四邊形的面積為:,如圖中,當時,點和點都在上運動.則,,,.此時兩平行線截平行四邊形的面積為.故關(guān)于的函數(shù)關(guān)系式為,當時,S隨t增大而增大,當時,S隨t增大而增大,當時,S隨t增大而減小,∴當t=8時,S最大,代入可得S=;(2)如圖中,由題意點在上運動的時間與點在上運動的時間相等,.當時,,則有,解得,當時,則有,解得,當時,,則有,解得.如圖中,作于.在Rt△CHR中,,,,,,,四邊形是平行四邊形,,四邊形是矩形,,當時,則有,解得,綜上所述,滿足條件的m的值為或或或.【考點】本題屬于四邊形綜合題,考查了平行四邊形的性質(zhì),多邊形的面積,等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題,學會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.2、(1);(2)當銷售單價為56元時,每天所獲得的利潤最大,最大利潤為1152元【解析】【分析】(1)根據(jù)“銷售單價每降低1元,則每天可多售出2件”列函數(shù)關(guān)系式;(2)根據(jù)總利潤=單件利潤×銷售量列出函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)分析其最值.【詳解】解:(1)由題意可得:,整理,得:,每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為;(2)設銷售所得利潤為w,由題意可得:,整理,得:,,當時,w取最大值為1152,當銷售單價為56元時,銷售這款文化衫每天所獲得的利潤最大,最大利潤為1152元.【考點】此題考查二次函數(shù)的應用——銷售問題,涉及運算能力及一次函數(shù)應用,熟練掌握相關(guān)知識是解題的關(guān)鍵.五、解答題1、(1)是等腰直角三角形,證明見解析(2)周長最小值為。最大值為【分析】(1)連接BD,CE,根據(jù)SAS證明得BD=CE,根據(jù)三角形中位線性質(zhì)可證明PM=PN;,進而可得結(jié)論;(2)當BD最小時即點D在AB上,此時周長最小,當點D在BA的延長線上時,BD最大,此時周長最大,均為,求出BD的長即可解決問題.(1)連接BD,CE,如圖,∵,,,∴∴∴∴BD=CE,∵點M,N,P分別是的中點∴//,,PN//BD,PN=BD∴PM=PN,∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°∴∴是等腰直角三角形;(2)由(1)知,是等腰直角三角形∴∴的周長為∵∴的周長為當BD最小時即點D在AB上,此時周長最小,∵AB=8,AD=3∴BD的最小值為AB-AD=8-3=5∴周長最小為當點D在BA的延長線上時,BD最大,此時周長最大,∴BD=AB+AD=8+3=11∴周長最大為【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),三角形中位線定理的應用等知識,熟練掌握相關(guān)知識是解答本題的關(guān)鍵.2、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長定理.3、(1);(2).【分析】(1)根據(jù)題意列表可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年福建生物工程職業(yè)技術(shù)學院單招職業(yè)傾向性測試題庫附答案解析
- 2023年福州黎明職業(yè)技術(shù)學院單招職業(yè)傾向性考試題庫附答案解析
- 2025年石河子工程職業(yè)技術(shù)學院單招職業(yè)技能測試模擬測試卷附答案解析
- 2025年西安鐵路職業(yè)技術(shù)學院單招職業(yè)適應性考試題庫附答案解析
- 2025年桐城師范高等??茖W校單招職業(yè)適應性測試模擬測試卷附答案解析
- 勝星集團招聘題庫及答案
- 2025四川樂山夾江縣下半年考核招聘衛(wèi)生專業(yè)技術(shù)人員17人備考題庫及答案解析(奪冠)
- 2024年合肥財經(jīng)職業(yè)學院單招綜合素質(zhì)考試模擬測試卷附答案解析
- 2023年遼寧民族師范高等??茖W校單招綜合素質(zhì)考試模擬測試卷附答案解析
- 2026年仰恩大學單招(計算機)測試備考題庫附答案
- 生活自理能力幼兒園培訓
- 麥當勞管理手冊
- 【MOOC】線性代數(shù)典型習題講解-北京化工大學 中國大學慕課MOOC答案
- 華中農(nóng)業(yè)大學《數(shù)學分析》2021-2022學年第一學期期末試卷
- 大學體育-瑜伽學習通超星期末考試答案章節(jié)答案2024年
- 廈門大學介紹
- 0-6歲兒童健康管理規(guī)范課件
- 分享五年級語文英才教程電子版
- 超星爾雅學習通《文獻信息檢索與利用(成都航空職業(yè)技術(shù)學院)》2024章節(jié)測試答案
- 21 小圣施威降大圣
- DL-T 2582.1-2022 水電站公用輔助設備運行規(guī)程 第1部分:油系統(tǒng)
評論
0/150
提交評論