人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測試試卷(含答案解析)_第1頁
人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測試試卷(含答案解析)_第2頁
人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測試試卷(含答案解析)_第3頁
人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測試試卷(含答案解析)_第4頁
人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測試試卷(含答案解析)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在正方形有中,E是AB上的動點(diǎn),(不與A、B重合),連結(jié)DE,點(diǎn)A關(guān)于DE的對稱點(diǎn)為F,連結(jié)EF并延長交BC于點(diǎn)G,連接DG,過點(diǎn)E作⊥DE交DG的延長線于點(diǎn)H,連接,那么的值為()A.1 B. C. D.22、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.3、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗(yàn)證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點(diǎn)C作CJ⊥DE于點(diǎn)J,交AB于點(diǎn)K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4、如圖所示,公路AC、BC互相垂直,點(diǎn)M為公路AB的中點(diǎn),為測量湖泊兩側(cè)C、M兩點(diǎn)間的距離,若測得AB的長為6km,則M、C兩點(diǎn)間的距離為()A.2.5km B.4.5km C.5km D.3km5、如圖,OA⊥OB,OB=4,P是射線OA上一動點(diǎn),連接BP,以B為直角頂點(diǎn)向上作等腰直角三角形,在OA上取一點(diǎn)D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運(yùn)動時(shí),PD的長度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,正方形ABCD中,BD為對角線,且BE為∠ABD的角平分線,并交CD延長線于點(diǎn)E,則∠E=______°.2、如圖,點(diǎn)E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.3、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點(diǎn)A,O,B,C循環(huán),點(diǎn)A的坐標(biāo)為(2,0),按此規(guī)律進(jìn)行下去,則點(diǎn)P2021的坐標(biāo)為_____.4、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內(nèi)壁離底部0.1m的點(diǎn)處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)處,若容器壁厚忽略不計(jì),則壁虎捕捉蚊子的最短路程是______m.5、點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),△ABC的周長為24,則△DEF的周長為______.三、解答題(5小題,每小題10分,共計(jì)50分)1、在菱形ABCD中,∠ABC=60°,P是直線BD上一動點(diǎn),以AP為邊向右側(cè)作等邊APE(A,P,E按逆時(shí)針排列),點(diǎn)E的位置隨點(diǎn)P的位置變化而變化.(1)如圖1,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD內(nèi)部或邊上時(shí),連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)當(dāng)點(diǎn)P在直線BD上時(shí),其他條件不變,連接BE.若AB=2,BE=2,請直接寫出APE的面積.2、已知如圖,在中,點(diǎn)是邊上一點(diǎn),連接,點(diǎn)是上一動點(diǎn),連接.(1)如圖1,當(dāng)時(shí),連接,延長交于點(diǎn),求證:;(2)如圖2,以為直角邊作等腰,連接,若,當(dāng)點(diǎn)在運(yùn)動過程中,求周長的最小值.

3、如圖,在?ABCD中,對角線AC,BD交于點(diǎn)O,E是BD延長線上一點(diǎn),且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.4、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),,M關(guān)于直線AF對稱.

(1)求證:B,M關(guān)于AE對稱;(2)若的平分線交AE的延長線于G,求證:.5、如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G.(1)求證:AE=CF;(2)若∠ABE=62°,求∠GFC+∠BCF的值.-參考答案-一、單選題1、B【解析】【分析】作輔助線,構(gòu)建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說明△BNH是等腰直角三角形,可得結(jié)論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點(diǎn)A關(guān)于直線DE的對稱點(diǎn)為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定定理和性質(zhì)定理,等知識,解決本題的關(guān)鍵是作出輔助線,利用正方形的性質(zhì)得到相等的邊和相等的角,證明三角形全等.2、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.3、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點(diǎn)B作BM⊥IA,交IA的延長線于點(diǎn)M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點(diǎn)C作CN⊥DA交DA的延長線于點(diǎn)N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點(diǎn)B作BM⊥IA,交IA的延長線于點(diǎn)M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點(diǎn)C作CN⊥DA交DA的延長線于點(diǎn)N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯(cuò)誤;綜上,共有3個(gè)正確的結(jié)論,故選:C.【點(diǎn)睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.4、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M(jìn)為AB的中點(diǎn),∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點(diǎn)間的距離為3km,故選:D.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),解題關(guān)鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.5、D【解析】【分析】過點(diǎn)作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過點(diǎn)作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長度保持不變,故選:D.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識點(diǎn),通過作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.二、填空題1、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進(jìn)而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點(diǎn)睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.2、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.3、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點(diǎn)P2021在x軸正半軸,進(jìn)而求得OP的長度,即可求得點(diǎn)的坐標(biāo).【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點(diǎn)P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標(biāo)是(4044,0),故答案為:(4044,0).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系點(diǎn)的坐標(biāo)規(guī)律,正方形的性質(zhì),找到點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.4、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內(nèi)壁離底部0.1m的點(diǎn)B處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)A處,∴,,,過點(diǎn)B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點(diǎn)睛】本題主要考查了平面展開—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.5、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點(diǎn),可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點(diǎn),∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點(diǎn)睛】本題考查了三角形的中位線定理,根據(jù)中點(diǎn)判斷出中位線,再利用中位線定理是解題的基本思路.三、解答題1、(1)BP=CE,CE⊥BC;(2)仍然成立,見解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點(diǎn)P在BD的延長線上時(shí)或點(diǎn)P在線段DB的延長線上時(shí),連接AC交BD于點(diǎn)O,由∠BCE=90°,根據(jù)勾股定理求出CE的長即得到BP的長,再求AO、PO、PD的長及等邊三角形APE的邊長可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長CE交AD于點(diǎn)H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設(shè)CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立;(3)如圖3中,當(dāng)點(diǎn)P在BD的延長線上時(shí),連接AC交BD于點(diǎn)O,連接CE,BE,作EF⊥AP于F,∵四邊形ABCD是菱形,∴AC⊥BDBD平分∠ABC,∵∠ABC=60°,AB=2,∴∠ABO=30°,∴AO=AB=,OB=AO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=2,BC=AB=2,∴CE==8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP===2,∵△APE是等邊三角形,∴S△AEP=×(2)2=7,如圖4中,當(dāng)點(diǎn)P在DB的延長線上時(shí),同法可得AP===2,∴S△AEP=×(2)2=31,【點(diǎn)睛】此題是四邊形的綜合題,重點(diǎn)考查菱形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識點(diǎn),解題的關(guān)鍵是正確地作出解題所需要的輔助線,將菱形的性質(zhì)與三角形全等的條件聯(lián)系起來,此題難度較大,屬于考試壓軸題.2、(1)證明見解析;(2)【分析】(1)通過證明△CEK≌△BEF及△KED≌△FED即可證明;(2)延長CE到點(diǎn)P,使EP=CE,先證明點(diǎn)G在過點(diǎn)P且與CE垂直的直線PN上運(yùn)動,再作點(diǎn)E關(guān)于點(diǎn)P的對稱點(diǎn)Q,連接BQ交PN于點(diǎn)G,此時(shí)△BEG的周長最小,求出此時(shí)GE+GB+BE的值即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,∴∠K=∠ABE,∵BF⊥AB,∴∠ABF=90°,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∠EBC=∠ECB,∴∠KED=∠FED,∴ED=ED,∴△KED≌△FED(SAS),∴DK=DF,(2)如圖,作BN⊥BE,GN⊥BN于點(diǎn)N,延長NG交射線CE于點(diǎn)P,

則∠EBN=∠FBG=90°,∴∠NBG=∠EBF=90°﹣∠GBE,∵∠N=∠BEF=90°,BG=BF,∴△BNG≌△BEF(AAS),∴BN=BE;∵∠EBN=∠N=∠BEP=90°,∴四邊形BEPN是正方形,∴PE=BE=CE,∴當(dāng)點(diǎn)F在CE上運(yùn)動時(shí),點(diǎn)G在PN上運(yùn)動;延長EP到點(diǎn)Q,使PQ=PE,連接BQ交PN于點(diǎn)G,∵PN垂直平分EQ,∴點(diǎn)Q與點(diǎn)E關(guān)于直線PN對稱,∵兩點(diǎn)之間,線段最短,∴此時(shí)GE+GB=GQ+GB=BQ最小,∵BE為定值,∴此時(shí)GE+GB+BE最小,即△BEG的周長最??;作DH⊥CE于點(diǎn)H,則∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=,∴DH=EH=1;∴CH=,∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ=,∴GE+GB+BE=,∴△BEG周長的最小值為.【點(diǎn)睛】本題重點(diǎn)考查平行四邊形的性質(zhì)、正方形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、以及運(yùn)用軸對稱的性質(zhì)求線段和的最小值問題的求解等知識與方法,深入探究與挖掘題中的隱含條件并且正確地作出輔助線是解題的關(guān)鍵,此題綜合性強(qiáng),難度大,屬于考試壓軸題.3、(1)見解析;(2)正方形ABCD的面積為【分析】(1)由等邊三角形的性質(zhì)得EO⊥AC,即BD⊥AC,再根據(jù)對角線互相垂直的平行四邊形是菱形,即可得出結(jié)論;(2)證明菱形ABCD是正方形,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AO=OC,∵△ACE是等邊三角形,∴EO⊥AC(三線合一),即BD⊥AC,∴?ABCD是菱形;(2)解:∵△ACE是等邊三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論