基礎(chǔ)強(qiáng)化江蘇省邳州市中考數(shù)學(xué)能力檢測(cè)試卷及完整答案詳解【奪冠】_第1頁(yè)
基礎(chǔ)強(qiáng)化江蘇省邳州市中考數(shù)學(xué)能力檢測(cè)試卷及完整答案詳解【奪冠】_第2頁(yè)
基礎(chǔ)強(qiáng)化江蘇省邳州市中考數(shù)學(xué)能力檢測(cè)試卷及完整答案詳解【奪冠】_第3頁(yè)
基礎(chǔ)強(qiáng)化江蘇省邳州市中考數(shù)學(xué)能力檢測(cè)試卷及完整答案詳解【奪冠】_第4頁(yè)
基礎(chǔ)強(qiáng)化江蘇省邳州市中考數(shù)學(xué)能力檢測(cè)試卷及完整答案詳解【奪冠】_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省邳州市中考數(shù)學(xué)能力檢測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、已知關(guān)于x的方程有一個(gè)根為1,則方程的另一個(gè)根為(

)A.-1 B.1 C.2 D.-22、如圖,點(diǎn)O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°3、設(shè)方程的兩根分別是,則的值為(

)A.3 B. C. D.4、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.05、為了解某地區(qū)九年級(jí)男生的身高情況,隨機(jī)抽取了該地區(qū)1000名九年級(jí)男生的身高數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計(jì)結(jié)果,隨機(jī)抽取該地區(qū)一名九年級(jí)男生,估計(jì)他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.87二、多選題(5小題,每小題3分,共計(jì)15分)1、古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點(diǎn)A,連接AO并延長(zhǎng)交⊙O于點(diǎn)B;②以點(diǎn)B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點(diǎn);③連接CO,DO并延長(zhǎng)分別交⊙O于點(diǎn)E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點(diǎn)G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點(diǎn)G B.∠FGA=∠FOAC.點(diǎn)G是線段EF的三等分點(diǎn) D.EF=AF2、下面一元二次方程的解法中,不正確的是(

)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=13、關(guān)于拋物線y=(x﹣2)2+1,下列說(shuō)法不正確的是(

)A.開(kāi)口向上,頂點(diǎn)坐標(biāo)(﹣2,1)

B.開(kāi)口向下,對(duì)稱軸是直線x=2C.開(kāi)口向下,頂點(diǎn)坐標(biāo)(2,1)

D.當(dāng)x>2時(shí),函數(shù)值y隨x值的增大而增大4、二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論中正確的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(7,y3)在該函數(shù)圖象上,則y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x25、如圖,PA、PB是的切線,切點(diǎn)分別為A、B,BC是的直徑,PO交于E點(diǎn),連接AB交PO于F,連接CE交AB于D點(diǎn).下列結(jié)論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、圓錐形冰淇淋的母線長(zhǎng)是12cm,側(cè)面積是60πcm2,則底面圓的半徑長(zhǎng)等于_____.2、把拋物線向左平移1個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,得到的拋物線的解析式為_(kāi)__.3、如圖,有長(zhǎng)為24米的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為10米),圍成中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關(guān)系式是____________,自變量x的取值范圍是____________.4、準(zhǔn)備在一塊長(zhǎng)為30米,寬為24米的長(zhǎng)方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路,(如圖所示)四條小路圍成的中間部分恰好是一個(gè)正方形,且邊長(zhǎng)是小路寬度的4倍,若四條小路所占面積為80平方米,則小路的寬度為_(kāi)____米.5、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點(diǎn)D,若☉O的半徑為2,則CD的長(zhǎng)為_(kāi)____四、解答題(6小題,每小題10分,共計(jì)60分)1、頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過(guò)點(diǎn)C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).2、二次函數(shù)與軸分別交于點(diǎn)和點(diǎn),與軸交于點(diǎn),直線的解析式為,軸交直線于點(diǎn).(1)求二次函數(shù)的解析式;(2)為線段上一動(dòng)點(diǎn),過(guò)點(diǎn)且垂直于軸的直線與拋物線及直線分別交于點(diǎn)、.直線與直線交于點(diǎn),當(dāng)時(shí),求值.3、在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸為.求的值及拋物線與軸的交點(diǎn)坐標(biāo);若拋物線與軸有交點(diǎn),且交點(diǎn)都在點(diǎn),之間,求的取值范圍.4、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).(1)如果P、Q分別從A、B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請(qǐng)說(shuō)明理由.5、(1)計(jì)算:(2)解方程:2(x﹣3)2=506、某網(wǎng)店銷售一款市場(chǎng)上暢銷的蒸蛋器,進(jìn)價(jià)為每個(gè)40元,在銷售過(guò)程中發(fā)現(xiàn),這款蒸蛋器銷售單價(jià)為60元時(shí),每星期賣出100個(gè).如果調(diào)整銷售單價(jià),每漲價(jià)1元,每星期少賣出2個(gè),現(xiàn)網(wǎng)店決定提價(jià)銷售,設(shè)銷售單價(jià)為x元,每星期銷售量為y個(gè).(1)請(qǐng)直接寫出y(個(gè))與x(元)之間的函數(shù)關(guān)系式;(2)當(dāng)銷售單價(jià)是多少元時(shí),該網(wǎng)店每星期的銷售利潤(rùn)是2400元?(3)當(dāng)銷售單價(jià)是多少元時(shí),該網(wǎng)店每星期的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?-參考答案-一、單選題1、C【解析】【分析】根據(jù)根與系數(shù)的關(guān)系列出關(guān)于另一根t的方程,解方程即可.【詳解】解:設(shè)關(guān)于x的方程的另一個(gè)根為x=t,∴1+t=3,解得,t=2故選:C.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=?,x1x2=.2、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計(jì)算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計(jì)算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點(diǎn)】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個(gè)內(nèi)角.3、A【解析】【分析】本題可利用韋達(dá)定理,求出該一元二次方程的二次項(xiàng)系數(shù)以及一次項(xiàng)系數(shù)的值,代入公式求解即可.【詳解】由可知,其二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),由韋達(dá)定理:,故選:A.【考點(diǎn)】本題考查一元二次方程根與系數(shù)的關(guān)系,求解時(shí)可利用常規(guī)思路求解一元二次方程,也可以通過(guò)韋達(dá)定理提升解題效率.4、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.5、C【解析】【分析】先計(jì)算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計(jì)概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計(jì)抽查該地區(qū)一名九年級(jí)男生的身高不低于170cm的概率是0.68.故選:C.【考點(diǎn)】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來(lái)越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來(lái)越精確.二、多選題1、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點(diǎn)G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點(diǎn)G是線段EF的三等分點(diǎn),故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯(cuò)誤,故答案為:ABC.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識(shí),解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.2、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項(xiàng)A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項(xiàng)B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項(xiàng)C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項(xiàng)D符合題意,故選:ACD.【考點(diǎn)】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.3、ABC【解析】【分析】由拋物線的解析式可求得其對(duì)稱軸、開(kāi)口方向、頂點(diǎn)坐標(biāo),進(jìn)一步可得出其增減性,可得出答案.【詳解】解:∵y=(x﹣2)2+1,∴拋物線開(kāi)口向上,對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)為(2,1),∴A、B、C不正確;當(dāng)x>2時(shí),y隨x的增大而增大,∴D正確,故選:ABC.【考點(diǎn)】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點(diǎn)式是解題的關(guān)鍵,即在y=中,對(duì)稱軸為直線x=h,頂點(diǎn)坐標(biāo)為(h,k).4、ABE【解析】【分析】根據(jù)拋物線的對(duì)稱軸為直線x=2,則有4a+b=0,可得A正確;根據(jù)二次函數(shù)的對(duì)稱性得到當(dāng)x=3時(shí),函數(shù)值大于0,則9a+3b+c>0,即9a+c>﹣3b,可得B正確;由于x=﹣1時(shí),y=0,則a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根據(jù)拋物線開(kāi)口向下得a<0,于是有7a﹣3b+2c<0,可得C錯(cuò)誤;利用拋物線的對(duì)稱性得到(﹣3,)在拋物線上,然后利用二次函數(shù)的增減性可得D錯(cuò)誤;作出直線y=﹣3,然后依據(jù)函數(shù)圖象進(jìn)行判斷可得E正確;綜上即可得答案.【詳解】A項(xiàng):∵x==2,∴4a+b=0,故A正確.B項(xiàng):∵拋物線與x軸的一個(gè)交點(diǎn)為(-1,0),對(duì)稱軸為直線x=2,∴另一個(gè)交點(diǎn)為(5,0),∵拋物線開(kāi)口向下,∴當(dāng)x=3時(shí),y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正確.C項(xiàng):∵拋物線與x軸的一個(gè)交點(diǎn)為(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵拋物線開(kāi)口向下,∴a<0,∴7a﹣3b+2c<0,故C錯(cuò)誤;D項(xiàng):∵拋物線的對(duì)稱軸為x=2,C(7,)在拋物線上,∴點(diǎn)(﹣3,)與C(7,)關(guān)于對(duì)稱軸x=2對(duì)稱,∵A(﹣3,)在拋物線上,∴=,∵﹣3<﹣12,在對(duì)稱軸的左側(cè),拋物線開(kāi)口向下,∴y隨x的增大而增大,∴=<,故D錯(cuò)誤.E項(xiàng):方程a(x+1)(x﹣5)=0的兩根為x=﹣1或x=5,過(guò)y=﹣3作x軸的平行線,直線y=﹣3與拋物線的交點(diǎn)的橫坐標(biāo)為方程的兩根,∵<,拋物線與x軸交點(diǎn)為(-1,0),(5,0),∴依據(jù)函數(shù)圖象可知:<﹣1<5<,故E正確.故答案為:ABE【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小,當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置,當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn).拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定,△=b2﹣4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2﹣4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2﹣4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn).5、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進(jìn)而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進(jìn)而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進(jìn)而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯(cuò)誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點(diǎn)】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識(shí),解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個(gè)知識(shí)點(diǎn)之間的融會(huì)貫通.三、填空題1、5cm.【解析】【分析】設(shè)圓錐的底面圓的半徑長(zhǎng)為rcm,根據(jù)圓錐的側(cè)面積公式計(jì)算即可.【詳解】解:設(shè)圓錐的底面圓的半徑長(zhǎng)為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點(diǎn)】圓錐的側(cè)面積公式是本題的考點(diǎn),牢記其公式是解題的關(guān)鍵.2、【解析】【分析】直接根據(jù)“上加下減,左加右減”進(jìn)行計(jì)算即可.【詳解】解:拋物線向左平移1個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,得到的拋物線的解析式為:,即:故答案為:.【考點(diǎn)】本題主要考查函數(shù)圖像的平移,熟記函數(shù)圖像的平移方式“上加下減,左加右減”是解題的關(guān)鍵.3、

S=-3x2+24x

≤x<8【解析】【詳解】可先用籬笆的長(zhǎng)表示出BC的長(zhǎng),然后根據(jù)矩形的面積=長(zhǎng)×寬,得出S與x的函數(shù)關(guān)系式,并根據(jù)墻的最大可用長(zhǎng)度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.4、1.25【解析】【分析】設(shè)小路的寬度為,根據(jù)圖形所示,用表示出小路的面積,由小路面積為80平方米,求出未知數(shù).【詳解】設(shè)小路的寬度為,由題意和圖示可知,小路的面積為,解一元二次方程,由,可得.【考點(diǎn)】本題綜合考查一元二次方程的列法和求解,這類實(shí)際應(yīng)用的題目,關(guān)鍵是要結(jié)合題意和圖示,列對(duì)方程.5、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長(zhǎng).【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點(diǎn)】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.四、解答題1、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長(zhǎng)度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點(diǎn)E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點(diǎn)B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點(diǎn)M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時(shí),S有最大值,最大值為.(3)存在,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對(duì)應(yīng)點(diǎn)為點(diǎn)F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時(shí),解得t1=0(舍),t2=4,此時(shí)點(diǎn)P(4,0).當(dāng)t2﹣t=﹣t時(shí),解得t1=0(舍),t2=,此時(shí)點(diǎn)P(,0).綜上,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【考點(diǎn)】此題考查了待定系數(shù)法求函數(shù)解析式,點(diǎn)坐標(biāo)轉(zhuǎn)換為線段長(zhǎng)度,幾何圖形與二次函數(shù)結(jié)合的問(wèn)題,最后一問(wèn)推出CG=HG為解題關(guān)鍵.2、(1);(2)的值為,,.【解析】【分析】(1)由直線BC求出B、C的坐標(biāo),再代入二次函數(shù)的解析式,求出b、c的值,得出二次函數(shù)的解析式;(2)用含有m的代數(shù)式表示點(diǎn)E和點(diǎn)F的坐標(biāo),用相似三角形對(duì)應(yīng)邊成比例的性質(zhì)列方程,求出m的值.【詳解】(1)直線的解析式點(diǎn),點(diǎn)和在拋物線上,解得:二次函數(shù)的解析式為:(2)二次函數(shù)與軸交于點(diǎn)、點(diǎn)軸交直線于點(diǎn)點(diǎn)軸,軸,軸交直線于點(diǎn),點(diǎn)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為①若點(diǎn)在原點(diǎn)右側(cè),如圖1,則,即,解得:,;②若點(diǎn)在原點(diǎn)左側(cè),如圖2,則即,解得:,(舍去);綜上所述,的值為,,.【考點(diǎn)】本題考查二次函數(shù)與幾何的綜合問(wèn)題,熟練掌握二次函數(shù)的性質(zhì)是本題的解題關(guān)鍵,解題時(shí)結(jié)合一次函數(shù)的性質(zhì),利用相似三角形的性質(zhì)列方程,靈活應(yīng)用函數(shù)圖像上點(diǎn)的坐標(biāo)特征.3、(1)a=-1;坐標(biāo)為,;(2).【解析】【分析】(1)利用拋物線的對(duì)稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點(diǎn)坐標(biāo);(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當(dāng)x=1時(shí),y<0,即-1-2+m<0;當(dāng)x=-1時(shí),y≥0,即-1+2+m≥0,然后解兩個(gè)不等式求出它們的公共部分可得到m的范圍.【詳解】根據(jù)題意得,解得,所以拋物線的解析式為,當(dāng)時(shí),,解得,,所以拋物線與軸的交點(diǎn)坐標(biāo)為,;拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對(duì)稱軸為直線,∵拋物線與軸的交點(diǎn)都在點(diǎn),之間,∴當(dāng)時(shí),,即,解得;當(dāng)時(shí),,即,解得,∴的取值范圍為.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問(wèn)題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)圖象的幾何變換.4、(1)1秒;(2)不可能,見(jiàn)解析【解析】【分析】(1)經(jīng)過(guò)x秒鐘,△PBQ的面積等于4cm2,根據(jù)點(diǎn)P從A點(diǎn)開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),表示出BP和BQ的長(zhǎng)可列方程求解;(2)看△PBQ的面積能否等于7cm2,只需令×2x(5﹣x)=7,化簡(jiǎn)該方程后,判斷該方程的△與0的關(guān)系,大于或等于0則可以,否則不可以.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論