2025年山西省介休市中考數(shù)學自我提分評估學生專用附答案詳解_第1頁
2025年山西省介休市中考數(shù)學自我提分評估學生專用附答案詳解_第2頁
2025年山西省介休市中考數(shù)學自我提分評估學生專用附答案詳解_第3頁
2025年山西省介休市中考數(shù)學自我提分評估學生專用附答案詳解_第4頁
2025年山西省介休市中考數(shù)學自我提分評估學生專用附答案詳解_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省介休市中考數(shù)學自我提分評估考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、若實數(shù)滿足,則的值是()A.1 B.-3或1 C.-3 D.-1或32、已知學校航模組設計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式h=﹣t2+24t+1,則下列說法中正確的是(

)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m3、拋物線的對稱軸為直線.若關于的一元二次方程(為實數(shù))在的范圍內有實數(shù)根,則的取值范圍是()A. B. C. D.4、一元二次方程配方后可化為(

)A. B.C. D.5、下列圖形中,既是中心對稱圖形也是軸對稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、下列四個說法中,不正確的是(

)A.一元二次方程有實數(shù)根B.一元二次方程有實數(shù)根C.一元二次方程有實數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實數(shù)根2、已知,為半徑是3的圓周上兩點,為的中點,以線段,為鄰邊作菱形,頂點恰在該圓直徑的三等分點上,則該菱形的邊長為(

)A. B. C. D.3、請觀察下列美麗的圖案,你認為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4、如圖在四邊形中,,,,為的中點,以點為圓心、長為半徑作圓,恰好使得點在圓上,連接,若,則下列說法中正確的是(

)A.是劣弧的中點 B.是圓的切線C. D.5、在圖所示的4個圖案中不包含圖形的旋轉的是(

)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在⊙O中,A,B,C是⊙O上三點,如果∠AOB=70o,那么∠C的度數(shù)為_______.2、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.3、圓錐形冰淇淋的母線長是12cm,側面積是60πcm2,則底面圓的半徑長等于_____.4、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.5、如圖,將矩形繞點A順時針旋轉到矩形的位置,旋轉角為.若,則的大小為________(度).四、簡答題(2小題,每小題10分,共計20分)1、定義:若一個三角形最長邊是最短邊的2倍,我們把這樣的三角形叫做“和諧三角形”.在△ABC中,點F在邊AC上,D是邊BC上的一點,AB=BD,點A,D關于直線l對稱,且直線l經(jīng)過點F.(1)如圖1,求作點F;(用直尺和圓規(guī)作圖保留作圖痕跡,不寫作法)(2)如圖2,△ABC是“和諧三角形”,三邊長BC,AC,AB分別a,b,c,且滿足下列兩個條件:a≠2b,和a2+4c2=4ac+a﹣b﹣1.①求a,b之間的等量關系;②若AE是△ABD的中線.求證:△ACE是“和諧三角形”.2、如圖所示,在銳角中,,,所對的邊分別是a,b,c,求證:.五、解答題(4小題,每小題10分,共計40分)1、在平面直角坐標系中,拋物線的對稱軸為.求的值及拋物線與軸的交點坐標;若拋物線與軸有交點,且交點都在點,之間,求的取值范圍.2、解下列方程:(1);(2)3、如圖,是由一些大小相同的小正方體組合成的簡單幾同體,請在下面方格紙中分別畫出從它的左面和上面看到的形狀圖.4、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.-參考答案-一、單選題1、A【解析】【分析】設x2-3x=y.將y代入原方程得到關于y的一元二次方程y2+2y-3=0即可,解這個方程求出y的值,然后利用根的判別式檢驗即可.【詳解】設x2-3x=y.將y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.當y=1時,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有兩個不相等的實數(shù)根,當y=-3時,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,無解.故y=1,即x2-3x=1.故選A.【考點】本題考查了換元法解一元二次方程及一元二次方程根的判別式,解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理.2、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當t=1時,h=24;當t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應用,解題的關鍵是熟練掌握二次函數(shù)的性質.3、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,∵方程在的范圍內有實數(shù)根,當時,,當時,,函數(shù)在時有最小值2,∴,故選A.【考點】本題考查二次函數(shù)的圖象及性質;能夠將方程的實數(shù)根問題轉化為二次函數(shù)與直線的交點問題,借助數(shù)形結合解題是關鍵.4、B【解析】【分析】根據(jù)題意直接對一元二次方程配方,然后把常數(shù)項移到等號右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項移到等號的右邊;把二次項的系數(shù)化為1;等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).5、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意;D、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意.故選:A.【點睛】本題考查中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.二、多選題1、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程有實數(shù)根,正確,不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的情況與判別式△的關系:解題的關鍵是掌握(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.2、BD【解析】【分析】過B作直徑,連接AC交AO與E,再根據(jù)兩種情況求出BD的兩個長度,再求得OD,OE,DE的值連接OD,根據(jù)勾股定理得到結論.【詳解】∵點B為的中點∴BD⊥AC①如圖∵點D恰再該圓直徑的三等分點上∴BD==2∴OD=OB-BD=1∵四邊形ABCD是菱形∴DE==1∴OE=2連接OC∵CE==∴邊CD=②如下圖BD==4同理可得,OD=1,OE=1,DE=2,連接OC,∵CE==∴CD=故選:BD【考點】本題考查了圓心角,弧,弦的關系,勾股定理,菱形的性質,正確地作出圖形是解題的關鍵.3、AB【解析】【分析】根據(jù)軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關鍵是熟記其概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.4、ABC【解析】【分析】直接利用圓周角定理以及結合圓心角、弧、弦的關系、切線的判定方法、平行線的判定方法、四邊形內角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項錯誤.故選擇ABC.【考點】此題主要考查了切線的判定以及圓周角與弧的關系、四邊形內角和、平行線的判定方法等知識,正確掌握相關判定方法是解題關鍵.5、AC【解析】【分析】根據(jù)中心對稱與軸對稱的概念,即可求解.【詳解】解:A、是軸對稱圖形,故本選項符合題意;B、是中心對稱圖形,屬于圖形的旋轉,故本選項不符合題意;C、是軸對稱圖形,故本選項符合題意;D、既是軸對稱圖形,也是中心對稱圖形,包含圖形的旋轉,故本選項不符合題意;故選:AC.【考點】本題主要考查了中心對稱與軸對稱的概念,熟練掌握軸對稱圖形的關鍵是尋找對稱軸,圖象沿對稱軸折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合是解題的關鍵.三、填空題1、35°【分析】利用圓周角定理求出所求角度數(shù)即可.【詳解】解:與都對,且,,故答案為:.【點睛】本題考查了圓周角定理,解題的關鍵是熟練掌握圓周角定理.2、【分析】連接OC交AB于點D,再連接OA.根據(jù)軸對稱的性質確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質,垂徑定理,勾股定理,綜合應用這些知識點是解題關鍵.3、5cm.【解析】【分析】設圓錐的底面圓的半徑長為rcm,根據(jù)圓錐的側面積公式計算即可.【詳解】解:設圓錐的底面圓的半徑長為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點】圓錐的側面積公式是本題的考點,牢記其公式是解題的關鍵.4、4【解析】【分析】由A、B坐標可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質,二次函數(shù)的頂點坐標,表示出b、c的值是解題的關鍵.5、20【分析】先利用旋轉的性質得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內角和計算出∠BAD‘=70°,然后利用互余計算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點A順時針旋轉到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.四、簡答題1、(1)見解析(2)①a=b+1②見解析【解析】【分析】(1)作AD的垂直平分線,交AC于F點即可;(2)①根據(jù)題意得到a=2c,聯(lián)立a2+4c2=4ac+a﹣b﹣1即可求解;②證明△ABE∽△CBA,得到,故可求解.【詳解】(1)如圖,點F為所求;(2)①∵△ABC是“和諧三角形”∴a=2c又a2+4c2=4ac+a﹣b﹣1.聯(lián)立化簡得到a=b+1;②∵E點是BD中點∴BE=由①得到AB=∴又∠ABE=∠CBA∴△ABE∽△CBA∴故△ACE是“和諧三角形”.【考點】此題主要考查相似三角形的判定與性質,解題的關鍵是熟知垂直平分線的做法.2、見解析【解析】【分析】方法1:過點A作于點D,根據(jù),可得,由此可得,由此可得結論;方法2:過點A作于點D,根據(jù)可得,由此可表示三角形的面積,根據(jù)面積相等可得相應等式,由此可得結論;方法3:作的外接圓,設的半徑為r,作直徑BD,連接CD,根據(jù)圓周角定理可得,由此可得結論.【詳解】解:方法1如圖所示,過點A作于點D,則,在中,,∴,在中,,∴,∴,∴.同理可證,.∴.方法2如圖所示,過點A作于點D,則,在中,在中,,∴,∴,同理可得,∴,∴,∴,∴.方法3如圖所示,作的外接圓,設的半徑為r,作直徑BD,連接CD.∵BD是的直徑,∴.∴,∴,同理可得,.∴.五、解答題1、(1)a=-1;坐標為,;(2).【解析】【分析】(1)利用拋物線的對稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點坐標;(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當x=1時,y<0,即-1-2+m<0;當x=-1時,y≥0,即-1+2+m≥0,然后解兩個不等式求出它們的公共部分可得到m的范圍.【詳解】根據(jù)題意得,解得,所以拋物線的解析式為,當時,,解得,,所以拋物線與軸的交點坐標為,;拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對稱軸為直線,∵拋物線與軸的交點都在點,之間,∴當時,,即,解得;當時,,即,解得,∴的取值范圍為.【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)圖象的幾何變換.2、(1),;(2),.【解析】【分析】(1)確定公式中的a,b,c的值,計算判別式△的值驗證方程是否有根,若有解,將a,b,c的值代入求根公式即可.(2)利用因式分解法解一元二次方程即可得.【詳解】解:(1),a=3,b=?4,c=?1,,∴,;(2).【考點】本題考查了解一元二次方程,主要解法包括:直接開平方法、配方法、公式法、因式分解法、換元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論