2024-2025學年鄉(xiāng)族撒拉族自治縣中考二模數(shù)學試題含解析_第1頁
2024-2025學年鄉(xiāng)族撒拉族自治縣中考二模數(shù)學試題含解析_第2頁
2024-2025學年鄉(xiāng)族撒拉族自治縣中考二模數(shù)學試題含解析_第3頁
2024-2025學年鄉(xiāng)族撒拉族自治縣中考二模數(shù)學試題含解析_第4頁
2024-2025學年鄉(xiāng)族撒拉族自治縣中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年鄉(xiāng)族撒拉族自治縣中考二模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在如圖所示的正方形網格中,網格線的交點稱為格點,已知A、B是兩格點,如果C也是圖中的格點,且使得△ABC為等腰直角三角形,則這樣的點C有()A.6個 B.7個 C.8個 D.9個2.如圖,立體圖形的俯視圖是A. B. C. D.3.一個正比例函數(shù)的圖象過點(2,﹣3),它的表達式為()A. B. C. D.4.一組數(shù)據1,2,3,3,4,1.若添加一個數(shù)據3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差5.在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE,BE分別交于點G、H.∠CBE=∠BAD,有下列結論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△BEC=S△ADF.其中正確的有()A.1個 B.2個 C.3個 D.4個6.在0.3,﹣3,0,﹣這四個數(shù)中,最大的是()A.0.3 B.﹣3 C.0 D.﹣7.下列因式分解正確的是A. B.C. D.8.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm9.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據是()A.SAS B.SSS C.AAS D.ASA10.自1993年起,聯(lián)合國將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識,加強水資源保護.某校在開展“節(jié)約每一滴水”的活動中,從初三年級隨機選出10名學生統(tǒng)計出各自家庭一個月的節(jié)約用水量,有關數(shù)據整理如下表.節(jié)約用水量(單位:噸)11.11.411.5家庭數(shù)46531這組數(shù)據的中位數(shù)和眾數(shù)分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.12.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.13.已知一個多邊形的每一個內角都是,則這個多邊形是_________邊形.14.已知關于x的方程x2-23x-k=0有兩個相等的實數(shù)根,則k的值為__________.15.若a,b互為相反數(shù),則a2﹣b2=_____.16.如圖△EDB由△ABC繞點B逆時針旋轉而來,D點落在AC上,DE交AB于點F,若AB=AC,DB=BF,則AF與BF的比值為_____.17.如圖,將△AOB以O為位似中心,擴大得到△COD,其中B(3,0),D(4,0),則△AOB與△COD的相似比為_____.三、解答題(共7小題,滿分69分)18.(10分)△ABC內接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.19.(5分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.20.(8分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.21.(10分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數(shù)表達式;設商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?22.(10分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數(shù)關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?23.(12分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.求y與x之間的函數(shù)關系式;直接寫出當x>0時,不等式x+b>的解集;若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.24.(14分)甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時間(時)的函數(shù)圖象如圖所示.(1)求甲組加工零件的數(shù)量y與時間之間的函數(shù)關系式.(2)求乙組加工零件總量的值.(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經過多長時間恰好裝滿第1箱?再經過多長時間恰好裝滿第2箱?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據題意,結合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有2個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有4個.故選:C.本題考查了等腰三角形的判定;解答本題關鍵是根據題意,畫出符合實際條件的圖形,再利用數(shù)學知識來求解.數(shù)形結合的思想是數(shù)學解題中很重要的解題思想.2、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.3、A【解析】

利用待定系數(shù)法即可求解.【詳解】設函數(shù)的解析式是y=kx,根據題意得:2k=﹣3,解得:k=.∴函數(shù)的解析式是:.故選A.4、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關概念和公式是解題的關鍵.5、C【解析】

根據題意和圖形,可以判斷各小題中的結論是否成立,從而可以解答本題.【詳解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵點F是AB的中點,∴FD=AB,F(xiàn)E=AB,∴FD=FE,①正確;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正確;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC?AD=AB?BE,∵∠AEB=90°,AE=BE,∴AB=BEBC?AD=BE?BE,∴BC?AD=AE2;③正確;設AE=a,則AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④錯誤,故選:C.本題考查相似三角形的判定與性質、全等三角形的判定與性質、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.6、A【解析】

根據正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù),比較即可【詳解】∵-3<-<0<0.3∴最大為0.3故選A.本題考查實數(shù)比較大小,解題的關鍵是正確理解正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù),本題屬于基礎題型.7、D【解析】

直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.8、B【解析】

解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數(shù)值.9、B【解析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據SSS可判定△COD≌△C'O'D',故選:B.本題主要考查了全等三角形的判定,關鍵是掌握全等三角形的判定定理.10、D【解析】分析:中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不止一個.詳解:這組數(shù)據的中位數(shù)是;這組數(shù)據的眾數(shù)是1.1.故選D.點睛:本題屬于基礎題,考查了確定一組數(shù)據的中位數(shù)和眾數(shù)的能力,要明確定義,一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】

根據勾股定理可以得出AB的長度,從而得知CD的長度,再根據旋轉的性質可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.本題考查的是勾股定理、直角三角形斜邊中點的性質和旋轉的性質,能夠根據勾股定理求出AB的長是解題的關鍵.12、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.13、十【解析】

先求出每一個外角的度數(shù),再根據邊數(shù)=360°÷外角的度數(shù)計算即可.【詳解】解:180°﹣144°=36°,360°÷36°=1,∴這個多邊形的邊數(shù)是1.故答案為十.本題主要考查了多邊形的內角與外角的關系,求出每一個外角的度數(shù)是關鍵.14、-3【解析】試題解析:根據題意得:△=(23)2-4×1×(-k)=0,即12+4k=0,

解得:k=-3,15、1【解析】【分析】直接利用平方差公式分解因式進而結合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關鍵.16、5【解析】

先利用旋轉的性質得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性質和三角形內角和定理證明∠ABD=∠A,則BD=AD,然后證明△BDC∽△ABC,則利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF與BF的比值.【詳解】∵如圖△EDB由△ABC繞點B逆時針旋轉而來,D點落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF?AF-BF2=0,∴AF=﹣1+52BF,即AF與BF的比值為本題主要考查了旋轉的性質、等腰三角形的性質、相似三角形的性質,熟練掌握這些知識點并靈活運用是解題的關鍵.17、3:1.【解析】∵△AOB與△COD關于點O成位似圖形,

∴△AOB∽△COD,

則△AOB與△COD的相似比為OB:OD=3:1,

故答案為3:1(或).三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】

(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見解析;(2)證明見解析;(3)CE=.本題考查圓的相關性質以及與圓有關的計算,全等三角形的性質和判定,第三問構造全等三角形找到與∠BMF相等的角為解題的關鍵.19、2.【解析】

根據勾股定理逆定理,證△ABD是直角三角形,得AD⊥BC,可證AD垂直平分BC,所以AB=AC.【詳解】解:∵AD是△ABC的中線,且BC=10,∴BD=BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角三角形,則AD⊥BC,又∵CD=BD,∴AC=AB=2.本題考核知識點:勾股定理、全等三角形、垂直平分線.解題關鍵點:熟記相關性質,證線段相等.20、(1)見解析;(2)1【解析】

(1)由矩形的性質可知∠A=∠C=90°,由翻折的性質可知∠A=∠F=90°,從而得到∠F=∠C,依據AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.本題考查了折疊的性質、全等三角形的判定和性質以及勾股定理的綜合運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.21、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解析】

(1)用待定系數(shù)法求一次函數(shù)的表達式;(2)利用利潤的定義,求與之間的函數(shù)表達式;(3)利用二次函數(shù)的性質求極值.【詳解】解:(1)設,由題意,得,解得,∴所求函數(shù)表達式為.(2).(3),其中,∵,∴當時,隨的增大而增大,當時,隨的增大而減小,當售價為70元時,獲得最大利潤,這時最大利潤為1800元.考點:二次函數(shù)的實際應用.22、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當AD為菱形的邊時,可得P1(3,0),P3(6,3),當AD為對角線時,P2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論