2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》定向訓練試卷(詳解版)_第1頁
2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》定向訓練試卷(詳解版)_第2頁
2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》定向訓練試卷(詳解版)_第3頁
2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》定向訓練試卷(詳解版)_第4頁
2024-2025學年人教版8年級數(shù)學下冊《平行四邊形》定向訓練試卷(詳解版)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖菱形ABCD,對角線AC,BD相交于點O,若BD=8,AC=6,則AB的長是()A.5 B.6 C.8 D.102、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:13、如圖,在中,,點,分別是,上的點,,,點,,分別是,,的中點,則的長為().A.4 B.10 C.6 D.84、下列測量方案中,能確定四邊形門框為矩形的是()A.測量對角線是否互相平分 B.測量兩組對邊是否分別相等C.測量對角線是否相等 D.測量對角線交點到四個頂點的距離是否都相等5、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.6、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點,若點和點分別是線段和邊上的動點,則的最小值為()A.5 B.6 C.7 D.87、直角三角形中,兩直角邊長分別是12和5,則斜邊上的中線長是()A.2.5 B.6 C.6.5 D.138、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點M,N分別為線段BC,AB上的動點(含端點,但點M不與點B重合),點E,F(xiàn)分別為DM,MN的中點,則EF長度的最大值為()A. B. C. D.9、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.10、如圖,以O(shè)為圓心,長為半徑畫弧別交于A、B兩點,再分別以A、B為圓心,以長為半徑畫弧,兩弧交于點C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在矩形ABCD中,對角線AC,BD相交于點O,AB=6,∠DAC=60°,點F在線段AO上從點A至點O運動,連接DF,以DF為邊作等邊三角形DFE,點E和點A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點E運動的路程是2,其中正確結(jié)論的序號為_____.2、如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.3、如圖,平面直角坐標系中,有,,三點,以A,B,O三點為頂點的平行四邊形的另一個頂點D的坐標為______.4、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.5、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是_____.6、如圖,矩形ABCD中,AB=9,AD=12,點M在對角線BD上,點N為射線BC上一動點,連接MN,DN,且∠DNM=∠DBC,當DMN是等腰三角形時,線段BN的長為___.7、如圖,在正方形ABCD中,點O在內(nèi),,則的度數(shù)為______.8、如圖,平行四邊形ABCD中,對角線AC、BD交于點O,M、N分別為AB、BC的中點,若OM=1.5,ON=1,則平行四邊形ABCD的周長是________.9、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________10、若一個菱形的兩條對角線的長為3和4,則菱形的面積為___________.三、解答題(5小題,每小題6分,共計30分)1、如圖,∠ACB=90°,CD⊥AB于點D,AF平分∠CAB交CD于點E,交BC于點F,作EG∥AB交CB于點G.(1)求證:△CEF是等腰三角形;(2)求證:CF=BG;(3)若F是CG的中點,EF=1,求AB的長.2、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點F,在線段上截取,使.(2)連接,求證:四邊形是菱形.3、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,D,M關(guān)于直線AF對稱.連結(jié)DM并延長交AE的延長線于N,求證:.4、已知:在中,點、點、點分別是、、的中點,連接、.(1)如圖1,若,求證:四邊形為菱形;(2)如圖2,過作交延長線于點,連接,,在不添加任何輔助線的情況下,請直接寫出圖中所有與面積相等的平行四邊形.

5、(閱讀材料)材料一:我們在小學學習過正方形,知道:正方形的四條邊都相等,四個角都是直角;材料二:如圖1,由一個等腰直角三角形和一個正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個與等腰三角形ADE全等的三角形,所以.(解決問題)如圖3,圖中由三個正方形組成的圖形(1)請你直接寫出圖中所有的全等三角形;(2)任意選擇一組全等三角形進行證明;(3)設(shè)圖中兩個小正方形的面積分別為S1和S2,若,求S1和S2的值.-參考答案-一、單選題1、A【解析】【分析】由菱形的性質(zhì)可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點睛】本題考查了菱形的性質(zhì)、勾股定理等知識;熟練掌握菱形對角線互相垂直且平分的性質(zhì)是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補.3、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點P,D分別是AF,AB的中點,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.4、D【解析】【分析】由平行四邊形的判定與性質(zhì)、矩形的判定分別對各個選項進行判斷即可.【詳解】解:A、∵對角線互相平分的四邊形是平行四邊形,∴對角線互相平分且相等的四邊形才是矩形,∴選項A不符合題意;B、∵兩組對邊分別相等是平行四邊形,∴選項B不符合題意;C、∵對角線互相平分且相等的四邊形才是矩形,∴對角線相等的四邊形不是矩形,∴選項C不符合題意;D、∵對角線交點到四個頂點的距離都相等,∴對角線互相平分且相等,∵對角線互相平分且相等的四邊形是矩形,∴選項D符合題意;故選:D.【點睛】本題考查了矩形的判定、平行四邊形的判定與性質(zhì)、解題的關(guān)鍵是熟記矩形的判定定理.5、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.6、C【解析】【分析】連接AQ,過點D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計算即可;【詳解】連接AQ,過點D作,∵,面積為21,∴,∴,∵MN垂直平分AB,∴,∴,∴當AQ的值最小時,的值最小,根據(jù)垂線段最短可知,當時,AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準確分析計算是解題的關(guān)鍵.7、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).8、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時,EF最大,因為N與B重合時DN最大,此時根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過點D作DH⊥AB交AB于點H,再利用直角三角形的性質(zhì)和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時,EF最大,∴N與B重合時DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質(zhì),利用中位線求得EF=DN是解題的關(guān)鍵.9、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學習應用.10、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對角線垂直的平行四邊形是菱形.二、填空題1、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點F在線段AO上從點A至點O運動時,點E從點O沿線段運動到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點F在線段AO上從點A至點O運動時,點E從點O沿線段運動到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點E運動的路程是,故結(jié)論④正確;故答案為:①②③④.【點睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識點,熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.2、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點A′在過點A且平行于BD的定直線上,作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點A′在過點A且平行于BD的定直線上,∴作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過點D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.3、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標相等,根據(jù)B的橫坐標和BO的值即可求出D的橫坐標.【詳解】∵平行四邊形ABCD的頂點A、B、O的坐標分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標是3+6=9,縱坐標是4,即D的坐標是(9,4),同理可得出D的坐標還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點睛】本題考查了坐標與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對邊平行且相等.4、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質(zhì),勾股定理,確定當AP⊥BC時,AP有最小值是本題關(guān)鍵.5、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運用等腰三角形的判定定理是解題的關(guān)鍵.6、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當NM=ND時,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當DM=DN時,此時M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當MN=MD時,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當DMN是等腰三角形時,線段BN的長為15或24或.故答案為:15或24或.【點睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題,注意不能漏解.7、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).8、10【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得BO=DO,AD=BC,AB=CD,再由條件M、N分別為AB、BC的中點可得MO是△ABD的中位線,NO是△BCD的中位線,再根據(jù)三角形中位線定理可得AD、DC的長.【詳解】解:∵四邊形ABCD是平行四邊形,∴BO=DO,AD=BC,AB=CD,∵M、N分別為AB、BC的中點,∴MO=AD,NO=CD,∵OM=1.5,ON=1,∴AD=3,CD=2,∴平行四邊形ABCD的周長是:3+3+2+2=10,故答案為:10.【點睛】此題主要考查了平行四邊形的性質(zhì),以及中位線定理,關(guān)鍵是掌握平行四邊形對邊相等,對角線互相平分.9、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進行求解.10、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進行計算即可.【詳解】解:菱形的面積.故答案為:6.【點睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析;(3)【分析】(1)由余角的性質(zhì)可得∠3=∠7=∠4,可得CE=CF,可得△CEF為等腰三角形;

(2)過E作EM∥BC交AB于M,得出平行四邊形EMBG,推出BG=EM,由“AAS”可證△CAE≌△MAE,推出CE=EM,由三角形的面積關(guān)系可求GB的長;

(3)證明△CEF是等邊三角形,求出BC,可得結(jié)論.【詳解】(1)證明:過E作EM∥BC交AB于M,∵EG∥AB,∴四邊形EMBG是平行四邊形,∴BG=EM,∠B=∠EMD,∵CD⊥AB,∴∠ADC=∠ACB=90°,∴∠1+∠7=90°,∠2+∠3=90°,∵AE平分∠CAB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠7,∴CE=CF,∴△CEF是等腰三角形;(2)證明:過E作EM∥BC交AB于M,則四邊形EMBG是平行四邊形,∴BG=EM,∵∠ADC=∠ACB=90°,∴∠CAD+∠B=90°,∠CAD+∠ACD=90°,∴∠ACD=∠B=∠EMD,∵在△CAE和△MAE中,∴△CAE≌△MAE(AAS),∴CE=EM,∵CE=CF,EM=BG,∴CF=BG.(3)∵CD⊥AB,EG∥AB,∴EG⊥CD,∴∠CEG=90°,∵CF=FG,∴EF=CF=FG,∵CE=CF,∴CE=CF=EF=1,∴△CEF是等邊三角形,∴∠ECF=60°,∴BC=3,∠B=30°,∴∴Rt△ABC中∴解得.【點睛】本題考查了平行四邊形的性質(zhì)和判定,三角形的內(nèi)角和定理,全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定等知識點,主要考查學生綜合運用定理進行推理的能力,有一定的難度.2、(1)見解析;(2)見解析【分析】(1)根據(jù)作一個角等于已知角和作一條線段等于已知線段查得結(jié)論;(2)先證明四邊形AGCF是平行四邊形,再由(1)可得AF=CF,即可得到結(jié)論.【詳解】解:(1)如圖所示:(2)如圖,∵四邊形ABCD是平行四邊形∴AD//BC,AD=BC∴AF//CG∵BG=DF∴AF=CG∴四邊形AGCF是平行四邊形∵∴AF=CF∴四邊形是菱形.【點睛】本題主要考查了基本作圖和證明四邊形是菱形,熟練掌握菱形的判定正理是解答本題的關(guān)鍵.3、見解析【分析】連結(jié),由對稱的性質(zhì)可知,進而可證,即可得,由∠AON=90°,可得.【詳解】證明:連結(jié),、關(guān)于對稱,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【點睛】本題是四邊形綜合題,主要考查了軸對稱的性質(zhì),等腰直角三角形的判定,全等三角形的判定與性質(zhì),綜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論