強(qiáng)化訓(xùn)練-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試試卷(含答案詳解版)_第1頁(yè)
強(qiáng)化訓(xùn)練-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試試卷(含答案詳解版)_第2頁(yè)
強(qiáng)化訓(xùn)練-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試試卷(含答案詳解版)_第3頁(yè)
強(qiáng)化訓(xùn)練-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試試卷(含答案詳解版)_第4頁(yè)
強(qiáng)化訓(xùn)練-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試試卷(含答案詳解版)_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開(kāi),折痕為MN,再過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長(zhǎng)為2,則FM的長(zhǎng)為()A.2 B. C. D.12、在□ABCD中,AC=24,BD=38,AB=m,則m的取值范圍是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<123、如圖,在矩形ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE,點(diǎn)F是AE的中點(diǎn),連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.544、如圖,點(diǎn)E是△ABC內(nèi)一點(diǎn),∠AEB=90°,D是邊AB的中點(diǎn),延長(zhǎng)線段DE交邊BC于點(diǎn)F,點(diǎn)F是邊BC的中點(diǎn).若AB=6,EF=1,則線段AC的長(zhǎng)為()A.7 B. C.8 D.95、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.56、已知菱形的邊長(zhǎng)為6,一個(gè)內(nèi)角為60°,則菱形較長(zhǎng)的對(duì)角線長(zhǎng)是()A. B. C.3 D.67、如圖,在矩形ABCD中,點(diǎn)O為對(duì)角線BD的中點(diǎn),過(guò)點(diǎn)O作線段EF交AD于F,交BC于E,OB=EB,點(diǎn)G為BD上一點(diǎn),滿足EG⊥FG,若∠DBC=30°,則∠OGE的度數(shù)為()A.30° B.36° C.37.5° D.45°8、如圖,DE是ABC的中位線,點(diǎn)F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長(zhǎng)為()A.2.5 B.1.5 C.4 D.59、在△ABC中,AD是角平分線,點(diǎn)E、F分別是線段AC、CD的中點(diǎn),若△ABD、△EFC的面積分別為21、7,則的值為()A. B. C. D.10、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點(diǎn),若點(diǎn)和點(diǎn)分別是線段和邊上的動(dòng)點(diǎn),則的最小值為()A.5 B.6 C.7 D.8第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、已知一直角三角形的兩直角邊長(zhǎng)分別為6和8,則斜邊上中線的長(zhǎng)度是_____.2、如圖,在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_(kāi)____.3、點(diǎn)D、E分別是△ABC邊AB、AC的中點(diǎn),已知BC=12,則DE=_____4、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點(diǎn)G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.5、如圖,△ABC中,D、E分別是AB、AC的中點(diǎn),若DE=4cm,則BC=_____cm.6、如圖,正方形ABCD的邊長(zhǎng)為做正方形,使A,B,C,D是正方形各邊的中點(diǎn);做正方形,使是正方形各邊的中點(diǎn)……以此類推,則正方形的邊長(zhǎng)為_(kāi)_________.7、如圖,在四邊形中,,分別是的中點(diǎn),分別以為直徑作半圓,這兩個(gè)半圓面積的和為,則的長(zhǎng)為_(kāi)______.8、如圖,四邊形和四邊形都是邊長(zhǎng)為4的正方形,點(diǎn)是正方形對(duì)角線的交點(diǎn),正方形繞點(diǎn)旋轉(zhuǎn)過(guò)程中分別交,于點(diǎn),,則四邊形的面積為_(kāi)_____.9、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.10、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于O,EF過(guò)點(diǎn)O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_(kāi)____cm2.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,將□ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F,連接AC、BE.(1)求證:四邊形ABEC是平行四邊形;(2)若∠AFC=2∠ADC,求證:四邊形ABEC是矩形.2、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過(guò)點(diǎn)A作射線l∥BC,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿射線l運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),作∠PCB的平分線交射線l于點(diǎn)D,記點(diǎn)D關(guān)于射線CP的對(duì)稱點(diǎn)是點(diǎn)E,連接AE、PE、BP.(1)求證:PC=PD;(2)當(dāng)△PBC是等腰三角形時(shí),求t的值;(3)是否存在點(diǎn)P,使得△PAE是直角三角形,如果存在,請(qǐng)直接寫出t的值,如果不存在,請(qǐng)說(shuō)明理由.3、如圖,在平行四邊形中,,..點(diǎn)在上由點(diǎn)向點(diǎn)出發(fā),速度為每秒;點(diǎn)在邊上,同時(shí)由點(diǎn)向點(diǎn)運(yùn)動(dòng),速度為每秒.當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為秒.(1)當(dāng)為何值時(shí),四邊形為平行四邊形?(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式.(3)當(dāng)為何值時(shí),四邊形的面積是四邊形的面積的四分之三?求出此時(shí)的度數(shù).(4)連接,是否存在某一時(shí)刻,使為等腰三角形?若存在,請(qǐng)求出此刻的值;若不存在,請(qǐng)說(shuō)明理由.4、如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D.(1)若DE∥AB交AC于點(diǎn)E,證明:△ADE是等腰三角形;(2)若BC=12,DE=5,且E為AC中點(diǎn),求AD的值.5、如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.(1)在圖1中,畫一個(gè)三邊長(zhǎng)都是有理數(shù)的直角三角形;(2)在圖2中,畫一個(gè)以BC為斜邊的直角三角形,使它們的三邊長(zhǎng)都是無(wú)理數(shù)且都不相等;(3)在圖3中,畫一個(gè)正方形,使它的面積是10.-參考答案-一、單選題1、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開(kāi),折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).2、C【解析】【分析】作出平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,,然后在中,利用三角形三邊的關(guān)系即可確定m的取值范圍.【詳解】解:如圖所示:∵四邊形ABCD為平行四邊形,∴,,在中,,∴,即,故選:C.【點(diǎn)睛】題目主要考查平行四邊形的性質(zhì)及三角形三邊的關(guān)系,熟練掌握平行四邊形的性質(zhì)及三角形三邊關(guān)系是解題關(guān)鍵.3、C【解析】【分析】過(guò)點(diǎn)F作,分別交于M、N,由F是AE中點(diǎn)得,根據(jù),計(jì)算即可得出答案.【詳解】如圖,過(guò)點(diǎn)F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點(diǎn)E是BC的中點(diǎn),∴,∵F是AE中點(diǎn),∴,∴.故選:C.【點(diǎn)睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長(zhǎng).【詳解】解:∵∠AEB=90,D是邊AB的中點(diǎn),AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點(diǎn),點(diǎn)F是邊BC的中點(diǎn),∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長(zhǎng)是解題的關(guān)鍵.5、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問(wèn)題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).6、B【解析】【分析】根據(jù)一個(gè)內(nèi)角為60°可以判斷較短的對(duì)角線與兩鄰邊構(gòu)成等邊三角形,求出較長(zhǎng)的對(duì)角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長(zhǎng)為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長(zhǎng)的對(duì)角線長(zhǎng)BD是:2×3=6.故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運(yùn)用菱形的性質(zhì)和等邊三角形的判定求出對(duì)角線長(zhǎng).7、C【解析】【分析】根據(jù)矩形和平行線的性質(zhì),得;根據(jù)等腰三角形和三角形內(nèi)角和性質(zhì),得;根據(jù)全等三角形性質(zhì),通過(guò)證明,得;根據(jù)直角三角形斜邊中線、等腰三角形、三角形內(nèi)角和性質(zhì),推導(dǎo)得,再根據(jù)余角的性質(zhì)計(jì)算,即可得到答案.【詳解】∵矩形ABCD∴∴∵OB=EB,∴∴∵點(diǎn)O為對(duì)角線BD的中點(diǎn),∴和中∴∴∵EG⊥FG,即∴∴∴故選:C.【點(diǎn)睛】本題考查了矩形、平行線、全等三角形、等腰三角形、三角形內(nèi)角和、直角三角形的知識(shí);解題的關(guān)鍵是熟練掌握矩形、全等三角形、等腰三角形、直角三角形斜邊中線的性質(zhì),從而完成求解.8、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進(jìn)而可得答案.【詳解】解:∵D為AB中點(diǎn),∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點(diǎn)睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.9、B【解析】【分析】過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,可求出,,再由點(diǎn)E、F分別是線段AC、CD的中點(diǎn),可得出,進(jìn)而求出,再利用角平分線的性質(zhì)可得出的值為即可求解.【詳解】解:過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,∴,∴,,∵點(diǎn)E、F分別是線段AC、CD的中點(diǎn),∴,∴,∵,∴,∴,過(guò)點(diǎn)D作DM⊥AB,DN⊥AC,∵AD為平分線,∴DM=DN,∵,∴,即:∴,故選:B.【點(diǎn)睛】本題考查角平分線性質(zhì)定理及三角形中位線的性質(zhì),解題關(guān)鍵是求出.10、C【解析】【分析】連接AQ,過(guò)點(diǎn)D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計(jì)算即可;【詳解】連接AQ,過(guò)點(diǎn)D作,∵,面積為21,∴,∴,∵M(jìn)N垂直平分AB,∴,∴,∴當(dāng)AQ的值最小時(shí),的值最小,根據(jù)垂線段最短可知,當(dāng)時(shí),AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點(diǎn)睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.二、填空題1、5【解析】【分析】直角三角形中,斜邊長(zhǎng)為斜邊中線長(zhǎng)的2倍,所以求斜邊上中線的長(zhǎng)求斜邊長(zhǎng)即可.【詳解】解:在直角三角形中,兩直角邊長(zhǎng)分別為6和8,則斜邊長(zhǎng)==10,∴斜邊中線長(zhǎng)為×10=5,故答案為5.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,根據(jù)勾股定理求得斜邊長(zhǎng)是解題的關(guān)鍵.2、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,作點(diǎn)D關(guān)于定直線的對(duì)稱點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,∴作點(diǎn)D關(guān)于定直線的對(duì)稱點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過(guò)點(diǎn)D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點(diǎn)睛】本題考查了軸對(duì)稱-最短路線問(wèn)題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.3、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計(jì)算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點(diǎn)睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關(guān)鍵.4、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個(gè)正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個(gè)正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點(diǎn)睛】本題考查勾股定理的知識(shí),有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進(jìn)行靈活的結(jié)合和應(yīng)用.5、8【解析】【分析】運(yùn)用三角形的中位線的知識(shí)解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點(diǎn)∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點(diǎn)睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.6、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長(zhǎng),再根據(jù)勾股定理求出和的長(zhǎng),找出規(guī)律,即可得出正方形的邊長(zhǎng).【詳解】解:∵A,B,C,D是正方形各邊的中點(diǎn)∴,∵正方形ABCD的邊長(zhǎng)為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長(zhǎng)為故答案為:.【點(diǎn)睛】本題考查了正方形性質(zhì)、勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)計(jì)算結(jié)果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.7、4【解析】【分析】根據(jù)題意連接BD,取BD的中點(diǎn)M,連接EM、FM,EM交BC于N,根據(jù)三角形的中位線定理推出EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根據(jù)勾股定理求出ME2+FM2=EF2,根據(jù)圓的面積公式求出陰影部分的面積即可.【詳解】解:連接BD,取BD的中點(diǎn)M,連接EM、FM,延長(zhǎng)EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分別是AD、BC、BD的中點(diǎn),∴EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴陰影部分的面積是:π(ME2+FM2)=EF2π=8π,∴EF=4.故答案為:4.【點(diǎn)睛】本題主要考查對(duì)勾股定理,三角形的內(nèi)角和定理,多邊形的內(nèi)角和定理,三角形的中位線定理,圓的面積,平行線的性質(zhì),面積與等積變形等知識(shí)點(diǎn)的理解和掌握,能正確作輔助線并求出ME2+FM2的值是解答此題的關(guān)鍵.8、4【解析】【分析】過(guò)點(diǎn)O作OG⊥AB,垂足為G,過(guò)點(diǎn)O作OH⊥BC,垂足為H,把四邊形的面積轉(zhuǎn)化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過(guò)點(diǎn)O作OG⊥AB,垂足為G,過(guò)點(diǎn)O作OH⊥BC,垂足為H,∵四邊形ABCD的對(duì)角線交點(diǎn)為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點(diǎn)睛】本題考查了正方形的性質(zhì),三角形的全等與性質(zhì),補(bǔ)形法計(jì)算面積,熟練掌握正方形的性質(zhì),靈活運(yùn)用補(bǔ)形法計(jì)算面積是解題的關(guān)鍵.9、菱形【解析】【分析】先在坐標(biāo)系中畫出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.10、10【解析】【分析】利用矩形性質(zhì),求證,將陰影部分的面積轉(zhuǎn)為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉(zhuǎn)化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)以全等三角形的判定與性質(zhì)以及中線平分三角形面積,熟練利用矩形性質(zhì),證明三角形全等,將陰影部分面積轉(zhuǎn)化為其他圖形的面積,這是解決本題的關(guān)鍵.三、解答題1、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;【分析】(1)根據(jù)平行四邊形的性質(zhì)得到,AB=CD,然后根據(jù)CE=DC,得到AB=EC,,利用“一組對(duì)邊平行且相等的四邊形是平行四邊形”判斷即可;(2)由(1)得的結(jié)論得四邊形ABEC是平行四邊形,再通過(guò)角的關(guān)系得出FA=FE=FB=FC,AE=BC,可得結(jié)論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,AB=CD,∵CE=DC,∴AB=EC,,∴四邊形ABEC是平行四邊形;(2)∵由(1)知,四邊形ABEC是平行四邊形,∴FA=FE,F(xiàn)B=FC.∵四邊形ABCD是平行四邊形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四邊形ABEC是矩形.【點(diǎn)睛】本題考查的是平行四邊形的判定與性質(zhì)及矩形的判定,關(guān)鍵是先由平行四邊形的性質(zhì)證三角形全等,然后推出平行四邊形,再通過(guò)角的關(guān)系證矩形.2、(1)見(jiàn)解析;(2)t=1或或;(3)存在,△PAE是直角三角形時(shí)t=或【分析】(1)根據(jù)平行線的性質(zhì)可得∠PDC=∠∠BCD,根據(jù)角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當(dāng)BP=BC=4cm時(shí),當(dāng)PC=BC=4cm時(shí),當(dāng)PC=PB時(shí)三種情況討論求解即可;(3)分當(dāng)∠PAE=90°時(shí),當(dāng)∠APE=90°時(shí),當(dāng)∠AEP=90°時(shí),三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,

若△PBC是等腰三角形,存在以下三種情況:①當(dāng)BP=BC=4cm時(shí),作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當(dāng)PC=BC=4cm時(shí),由勾股定理,即,解得;③當(dāng)PC=PB時(shí),P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當(dāng)t=1或或時(shí),△PBC是等腰三角形;(3)∵D關(guān)于射線CP的對(duì)稱點(diǎn)是點(diǎn)E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,則存在以下三種情況:①當(dāng)∠PAE=90°時(shí),此時(shí)點(diǎn)C、A、E在一條直線上,且AE=AC=3cm,∵CD平分∠BCP,∴∠ECP=∠DCP=∠BCD,∴∠ACP=∠ACB=30°,∴,∵,即,∴即2t=,解得;②當(dāng)∠APE=90°時(shí),∴∠EPD=90°∵D、E關(guān)于直線CP對(duì)稱,∴∠EPF=∠DPF=45°,∴∠APC=∠DPF=45°,∵l∥BC,∴∠CAP=180°-∠ACB=90°,∴∠ACP=45°,∴AP=AC=3cm,∴,∴;③當(dāng)∠AEP=90°時(shí),在Rt△ACP中,PC>AP,在Rt△AEP中,AP>PE,∵PC=PE=PD,故此情況不存在,綜上,△PAE是直角三角形時(shí)或.【點(diǎn)睛】本題主要考查了軸對(duì)稱的性質(zhì),角平分線的定義,平行線的性質(zhì),等腰三角形的性質(zhì),勾股定理,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠利用分類討論的思想求解.3、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當(dāng)t=4或

或時(shí),為等腰三角形,理由見(jiàn)解析.【分析】(1)利用平行四邊形的對(duì)邊相等AQ=BP建立方程求解即可;

(2)先構(gòu)造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;

(3)利用面積關(guān)系求出t,即可求出DQ,進(jìn)而判斷出DQ=PQ,即可得出結(jié)論;

(4)分三種情況,利用等腰三角形的性質(zhì),兩腰相等建立方程求解即可得出結(jié)論.【詳解】解:(1)∵在平行四邊形中,,,由運(yùn)動(dòng)知,AQ=16?t,BP=2t,

∵四邊形ABPQ為平行四邊形,

∴AQ=BP,

∴16?t=2t

∴t=,

即:t=s時(shí),四邊形ABPQ是平行四邊形;(2)過(guò)點(diǎn)A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,

∴AE=4,

由運(yùn)動(dòng)知,BP=2t,DQ=t,

∵四邊形ABCD是平行四邊形,

∴AD=BC=16,

∴AQ=16?t,

∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,

∵BC=16,

∴S四邊形ABCD=16×4=64,

由(2)知,y=S四邊形ABPQ=2t+32(0<t≤8),

∵四邊形ABPQ的面積是四邊形ABCD的面積的四分之三

∴2t+32=×64,

∴t=8;

如圖,當(dāng)t=8時(shí),點(diǎn)P和點(diǎn)C重合,DQ

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論