強化訓(xùn)練-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試練習(xí)題(含答案詳解)_第1頁
強化訓(xùn)練-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試練習(xí)題(含答案詳解)_第2頁
強化訓(xùn)練-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試練習(xí)題(含答案詳解)_第3頁
強化訓(xùn)練-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試練習(xí)題(含答案詳解)_第4頁
強化訓(xùn)練-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試練習(xí)題(含答案詳解)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(

)A.②④ B.①②④

C.①②③④

D.②③④2、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm3、如圖,在菱形中,P是對角線上一動點,過點P作于點E.于點F.若菱形的周長為24,面積為24,則的值為()A.4 B. C.6 D.4、如圖,正方形ABCO和正方形DEFO的頂點A、E、O在同一直線上,且EF=,AB=3,給出下列結(jié)論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個5、如圖,已知在正方形ABCD中,厘米,,點E在邊AB上,且厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上以a厘米/秒的速度由C點向D點運動,設(shè)運動時間為t秒.若存在a與t的值,使與全等時,則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在矩形ABCD中,AB=3,BC=4,點P是對角線AC上一點,若點P、A、B組成一個等腰三角形時,△PAB的面積為___________.2、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對折后展開得到折痕EF.點P為BC邊上任意一點,若將紙片沿著DP折疊,使點C恰好落在線段EF的三等分點上,則BC的長等于_________cm.3、在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC的長為_____.4、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,則cos∠EFG的值為________.5、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點C落在點P處;在AE上取一點Q,將ABQ,EDQ分別沿BQ,DQ折疊,點A,E恰好落在點P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點共線時,BQ=_______.三、解答題(5小題,每小題10分,共計50分)1、在△ABC中,AB=AC=x,BC=12,點D,E分別為BC,AC的中點,線段BE的垂直平分線交邊BC于點F,(1)當(dāng)x=10時,求線段AD的長.(2)x取何值時,點F與點D重合.(3)當(dāng)DF=1時,求x2的值.2、如圖,已知正方形中,點是邊延長線上一點,連接,過點作,垂足為點,與交于點.(1)求證:;(2)若,,求BG的長.3、如圖,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,過C作CD⊥BE于D,(1)如圖1,求證:CD=BE(2)如圖2,過點A作AF⊥BE,寫出AF,BD,CD之間的數(shù)量關(guān)系并說明理由.4、如圖,將直角三角形分割成一個正方形和兩對全等的直角三角形,在Rt△ABC中,∠ACB=90°,四邊形FCEO是正方形,Rt△AOF≌Rt△AOD,Rt△BOE≌Rt△BOD.若設(shè)正方形的邊長為x,則可以探究x與直角三角形ABC的三邊a,b,c之間的關(guān)系.探究:∵Rt△BOE≌Rt△BOD,∴BD=BE=a﹣x,∵Rt△AOF≌Rt△AOD,∴AD=AF=b﹣x,∵AB=BD+AD,∴a﹣x+b﹣x=c,∴x=.(1)小穎同學(xué)發(fā)現(xiàn)利用S△ABC=S△AOB+S△AOC+S△BOC也可以探究正方形的邊長x與直角三角形ABC的三邊a,b,c之間的關(guān)系.請你根據(jù)小穎的思路,完成她的探究過程.(2)請你結(jié)合探究和小穎的解答過程驗證勾股定理.

5、在菱形ABCD中,∠ABC=60°,P是直線BD上一動點,以AP為邊向右側(cè)作等邊APE(A,P,E按逆時針排列),點E的位置隨點P的位置變化而變化.(1)如圖1,當(dāng)點P在線段BD上,且點E在菱形ABCD內(nèi)部或邊上時,連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點P在線段BD上,且點E在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)當(dāng)點P在直線BD上時,其他條件不變,連接BE.若AB=2,BE=2,請直接寫出APE的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對①作出判斷;延長EF,交CD延長線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對②作出判斷;由△AEF≌△DMF可得這兩個三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識,構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點.2、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長為32cm,∴,即,解得:,∴.故選:C【點睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對邊相等是解題的關(guān)鍵.3、A【解析】【分析】連接BP,通過菱形的周長為24,求出邊長,菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過面積法得出等量關(guān)系.4、B【解析】【分析】根據(jù)∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據(jù)已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長線于G,根據(jù)勾股定理即可得到BD,根據(jù)三角形面積的關(guān)系計算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯誤;③作DH⊥AB于H,作FG⊥CO交CO的延長線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點睛】本題主要考查了正方形的性質(zhì),勾股定理,準(zhǔn)確計算是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進(jìn)行求解即可.【詳解】解:當(dāng),即點Q的運動速度與點P的運動速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運動時間t=4÷2=2(秒);當(dāng),即點Q的運動速度與點P的運動速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點P,Q運動的時間t=(秒).綜上t的值為2.5或2.故選:D.【點睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個角都是直角;兩邊及其夾角分別對應(yīng)相等的兩個三角形全等.同時要注意分類思想的運用.二、填空題1、或或3【解析】【分析】過B作BM⊥AC于M,根據(jù)矩形的性質(zhì)得出∠ABC=90°,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當(dāng)AB=BP=3時,如圖1,過B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當(dāng)AB=AP=3時,如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點睛】本題主要是考查了矩形的性質(zhì)、等腰三角形的判定以及勾股定理求邊長,熟練掌握矩形的性質(zhì),利用等腰三角形的判定,分成三種情況討論,是解決本題的關(guān)鍵.2、或【解析】【分析】分為將紙片沿縱向?qū)φ郏脱貦M向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當(dāng)將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點在中有如圖:當(dāng)將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點故答案為:或【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問題應(yīng)全面,不應(yīng)丟解.3、10或14##14或10【解析】【分析】利用BF平分∠ABC,CE平分∠BCD,以及平行關(guān)系,分別求出、,通過和是否相交,分兩類情況討論,最后通過邊之間的關(guān)系,求出的長即可.【詳解】解:四邊形ABCD是平行四邊形,,,,,,BF平分∠ABC,CE平分∠BCD,,,,,由等角對等邊可知:,,情況1:當(dāng)與相交時,如下圖所示:,,,情況2:當(dāng)與不相交時,如下圖所示:,,故答案為:10或14.【點睛】本題主要是考查了平行四邊形的性質(zhì),熟練運用平行關(guān)系+角平分線證邊相等,是解決本題的關(guān)鍵,還要注意根據(jù)和是否相交,本題分兩類情況,如果沒考慮仔細(xì),會漏掉一種情況.4、【解析】【分析】根據(jù)題意連接BE,連接AE交FG于O,如圖,利用菱形的性質(zhì)得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計算出BE=CE=,然后證明BE⊥AB,利用勾股定理計算出AE,從而得到OA的長;設(shè)AF=x,根據(jù)折疊的性質(zhì)得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點為CD的中點,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設(shè)AF=x,∵菱形紙片翻折,使點A落在CD的中點E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點睛】本題考查了折疊的性質(zhì)以及菱形的性質(zhì),注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.5、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識,掌握折疊的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)8;(2)12;(3)72或216【分析】(1)根據(jù)等腰三角形的性質(zhì)以及勾股定理即可解決問題.

(2)如圖2中,當(dāng)點F與D重合時,連接DE.求出此時x的值即可判斷.

(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)如圖1中,∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,∵AB=10,BD=CD=6,∴AD===8.(2)如圖2中,當(dāng)點F與D重合時,連接DE.∵OF垂直平分線段BE,∴BD=DE=6,∵∠ADC=90°,AE=EC,∴AC=2DE=12,當(dāng)x=12時,點F與點D重合.(3)①當(dāng)點F在點D左側(cè)時,作EG⊥BC于G,連接EF,DE.∵DE=EC,EG⊥BC∴DG=GC=3,∵BD=6,DF=1,∴BF=5,∵OF垂直平分線段EB,∴EF=FB=5,在Rt△EFG中,∵EF=5,F(xiàn)G=4,∴EG==3,在Rt△DEG中,DE==3,∵AC=2DE,∴AC=6,∴x2=AC2=72.②當(dāng)點F在點D右側(cè)時,作EG⊥BC于G,連接EF,DE.易知BF=EF=7,F(xiàn)G=2,EG===3,∴DE==3,∴AC=2DE=6,∴x2=AC2=216.【點睛】本題屬于三角形綜合題,考查了等腰三角形的性質(zhì),線段的垂直平分線的性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,學(xué)會用分類討論的思想思考問題.2、(1)見解析;(2)【分析】(1)由正方形的性質(zhì)可得,,由的余角相等可得∠CBG=∠CDE,進(jìn)而證明△BCG≌△DCE,從而證明CG=CE;(2)證明正方形的性質(zhì)可得,結(jié)合已知條件即可求得,進(jìn)而勾股定理即可求得的長【詳解】(1)∵BF⊥DE∴∠BFE=90°∵四邊形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE∴,在中,【點睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,掌握三角形全等的性質(zhì)與判定與勾股定理是解題的關(guān)鍵.3、(1)證明見解析;(2)BD=CD+2AF,理由見解析【分析】(1)延長BA與CD的延長線交于點G,先證明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分線,得到∠GBD=∠CBD,即可證明△BDG≌△BDC得到CD=GD,則;(2)如圖所示,連接AD,取BE中點H,連接AH,由直角三角形斜邊上的中線等于斜邊的一半可得,,則,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根據(jù)BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,從而得到AF=HF,則DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.【詳解】解:(1)如圖所示,延長BA與CD的延長線交于點G,∵∠BAC=90°,∴∠CAG=90°,∵CD⊥BE,∴∠EDC=∠GDB=∠BAE=90°,又∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABE和△ACG中,,∴△ABE≌△ACG(ASA),∴BE=CG,∵BD是∠ABC的角平分線,∴∠GBD=∠CBD,在△BDG和△BDC中,,∴△BDG≌△BDC(ASA),∴CD=GD,∴;(2)BD=CD+2AF,理由如下:如圖所示,連接AD,取BE中點H,連接AH,由(1)得CD=GD,,∵△BAE和△CAG都是直角三角形,H為BE中點,D為CG中點,∴,,∴,∴∠ABH=∠BAH,∵∠BAC=90°,AB=AC,∴∠ABC=45°,又∵BD平分∠ABC,∴∠ABH=∠BAH=22.5°,∴∠AHF=∠ABH+∠BAH=45°,∵AF⊥DH,∴HF=DF,∠AFH=90°,∴∠HAF=45°,∴AF=HF,∴DH=2AF,∴BD=BH+HD=BH+2AF=CD+2AF.【點睛】.本題主要考查了全等三角形的性質(zhì)與判定,角平分線的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.4、(1),證明見解析;(2)見解析【分析】(1)由正方形的性質(zhì)可得OF=OE,OF⊥AC,OE⊥BC,由Rt△AOF≌Rt△AOD,可以推出OE=OD=OE,再由可得,由此即可得到答案;(2)根據(jù)(1)和題目已知可得,由此利用完全平方公式和平方差公式求解即可.【詳解】解:(1)如圖所示,連接OC∵四邊形OECF是正方形,∴OF=OE,OF⊥AC,OE⊥BC,∵Rt△AOF≌Rt△AOD,∴OF=OD,∴OE=OD=OE,∵∠ACB=90°,∴∴,∴,即∴;

(2)∵,∴,∴,∴,∴即.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì),平方差公式,完全平方公式,勾股定理的證明等等,解題的關(guān)鍵在于正確理解題意.5、(1)BP=CE,CE⊥BC;(2)仍然成立,見解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點P在BD的延長線上時或點P在線段DB的延長線上時,連接AC交BD于點O,由∠BCE=90°,根據(jù)勾股定理求出CE的長即得到BP的長,再求AO、PO、PD的長及等邊三角形APE的邊長可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論