版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,則AE的長(zhǎng)為()A.3cm B.2cm C.2cm D.cm2、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.3、如圖,點(diǎn)E是長(zhǎng)方形ABCD的邊CD上一點(diǎn),將ADE沿著AE對(duì)折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),若AD=10,AB=8,那么AE長(zhǎng)為()A.5 B.12 C.5 D.134、如圖,菱形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長(zhǎng)度為()A.3 B.4 C.2.5 D.55、在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,已知在矩形中,,,將沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)E處,連接,則的長(zhǎng)為_________.2、如圖,在中,,點(diǎn)、、分別是三邊的中點(diǎn),且,則的長(zhǎng)度是__________.3、如圖,已知正方形ABCD的邊長(zhǎng)為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM若AE=2,則FM的長(zhǎng)為___.4、如圖,在?ABCD中,點(diǎn)E是對(duì)角線AC上一點(diǎn),過(guò)點(diǎn)E作AC的垂線,交邊AD于點(diǎn)P,交邊BC于點(diǎn)Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.5、如圖,點(diǎn)E,F(xiàn)在正方形ABCD的對(duì)角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥AB,交BC于點(diǎn)E,連接AE,取AE的中點(diǎn)P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明;若不成立,請(qǐng)說(shuō)明理由.(3)問(wèn)題解決:若BC=3BD=3,將圖(1)中的△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),當(dāng)BE⊥AB時(shí),請(qǐng)直接寫出線段CP的長(zhǎng).2、如圖,在中,過(guò)點(diǎn)作于點(diǎn),點(diǎn)在邊上,,連接,.(1)求證:四邊形是矩形;(2)若,,,求證:平分.3、如圖,四邊形ABCD為平行四邊形,∠BAD的平分線AF交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F.點(diǎn)E恰是CD的中點(diǎn).求證:(1)△ADE≌△FCE;(2)BE⊥AF.4、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),D,M關(guān)于直線AF對(duì)稱.連結(jié)DM并延長(zhǎng)交AE的延長(zhǎng)線于N,求證:.5、如圖,在Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),.(1)試判斷四邊形BDCE的形狀,并證明你的結(jié)論;(2)若∠ABC=30°,AB=4,則四邊形BDCE的面積為.-參考答案-一、單選題1、D【解析】【分析】根據(jù)矩形和直角三角形的性質(zhì)求出∠BAE=30°,再根據(jù)直角三角形的性質(zhì)計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,∴AE=(cm),故選:D.【點(diǎn)睛】本題考查了矩形的性質(zhì),含30度角的直角三角形的性質(zhì),熟記各圖形的性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.2、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點(diǎn)睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.3、C【解析】【分析】根據(jù)矩形的性質(zhì),折疊的性質(zhì),勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對(duì)折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點(diǎn)睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.4、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長(zhǎng),進(jìn)而根據(jù)三角形中位線定理求得的長(zhǎng)度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長(zhǎng)是解題的關(guān)鍵.5、A【解析】【分析】利用平行四邊形的對(duì)邊平行且相等的性質(zhì),先利用對(duì)邊平行,得到D點(diǎn)和C點(diǎn)的縱坐標(biāo)相等,再求出CD=AB=5,得到C點(diǎn)橫坐標(biāo),最后得到C點(diǎn)的坐標(biāo).【詳解】解:四邊形ABCD為平行四邊形。且。C點(diǎn)和D的縱坐標(biāo)相等,都為3.A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(5,0),.D點(diǎn)坐標(biāo)為(2,3),C點(diǎn)橫坐標(biāo)為,點(diǎn)坐標(biāo)為(7,3).故選:A.【點(diǎn)睛】本題主要是考察了平行四邊形的性質(zhì)、利用線段長(zhǎng)求點(diǎn)坐標(biāo),其中,熟練應(yīng)用平行四邊形對(duì)邊平行且相等的性質(zhì),是解決與平行四邊形有關(guān)的坐標(biāo)題的關(guān)鍵.二、填空題1、【解析】【分析】過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點(diǎn)睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.2、【解析】【分析】根據(jù)中位線定理可得的長(zhǎng)度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長(zhǎng)度.【詳解】解:∵點(diǎn)、、分別是三邊的中點(diǎn),且∴∵∴故答案為:【點(diǎn)睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關(guān)鍵.3、5【解析】【分析】由旋轉(zhuǎn)性質(zhì)可證明△EDF≌△MDF,從而EF=FM;設(shè)FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉(zhuǎn)的性質(zhì)可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設(shè)EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識(shí),運(yùn)用了方程思想,關(guān)鍵是證明三角形全等.4、【解析】【分析】利用平行四邊形的知識(shí),將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長(zhǎng)度,即可求解;【詳解】過(guò)點(diǎn)A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點(diǎn)共線時(shí),的最小,∵,,∴,在中,;故答案是:.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.5、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對(duì)角線相等且互相垂直平分是解題的關(guān)鍵.三、解答題1、(1)PD=PC,PD⊥PC;(2)成立,見(jiàn)解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關(guān)系即可,即可求解;(2)過(guò)點(diǎn)P作PT⊥AB交BC的延長(zhǎng)線于T,交AC于點(diǎn)O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當(dāng)點(diǎn)E在BC的上方時(shí)和當(dāng)點(diǎn)E在BC的下方時(shí),過(guò)點(diǎn)P作PQ⊥BC于Q,利用等腰直角三角形的性質(zhì)求得,即可求解.【詳解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵點(diǎn)P為AE的中點(diǎn),∴,∴,,∴,∴故答案為:,.(2)結(jié)論成立.理由如下:過(guò)點(diǎn)P作PT⊥AB交BC的延長(zhǎng)線于T,交AC于點(diǎn)O.則∴,∴,,由勾股定理可得:∴∴∴∵點(diǎn)P為AE的中點(diǎn),∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如圖3﹣1中,當(dāng)點(diǎn)E在BC的上方時(shí),過(guò)點(diǎn)P作PQ⊥BC于Q.則,∴∵∴由(2)可得,,,∴為等腰直角三角形∴∴由勾股定理得,如圖3﹣2中,當(dāng)點(diǎn)E在BC的下方時(shí),同法可得PC=PD=2.綜上所述,PC的長(zhǎng)為4或2.【點(diǎn)睛】此題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì),做輔助線,構(gòu)造出全等三角形.2、(1)見(jiàn)解析;(2)見(jiàn)解析【分析】(1)先證明四邊形是平行四邊形,結(jié)合,從而可得結(jié)論;(2)先證明,再求解證明證明從而可得結(jié)論.【詳解】(1)證明:四邊形是平行四邊形,.即,,四邊形是平行四邊形.,,四邊形是矩形;(2)四邊形是平行四邊形,,.四邊形是矩形;在中,由勾股定理,得,,,,即平分.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,角平分線的定義,平行四邊形的判定與性質(zhì),矩形的判定,證明四邊形是平行四邊形是解(1)的關(guān)鍵,證明是解(2)的關(guān)鍵.3、(1)見(jiàn)解析;(2)見(jiàn)解析.【分析】(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠D=∠ECF,則可證明△ADE≌△FCE(ASA);(2)由平行四邊形的性質(zhì)證出AB=BF,由全等三角形的性質(zhì)得出AE=FE,由等腰三角形的性質(zhì)可得出結(jié)論.【詳解】證明:(1)∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠D=∠ECF,∵E為CD的中點(diǎn),∴ED=EC,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)∵四邊形ABCD為平行四邊形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∵△ADE≌△FCE,∴AE=FE,∴BE⊥AF.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),全等三角形的性質(zhì)與判定,角平分線的定義,等腰三角形的性質(zhì)與判定,熟知相關(guān)知識(shí)是解題的關(guān)鍵.4、見(jiàn)解析【分析】連結(jié),由對(duì)稱的性質(zhì)可知,進(jìn)而可證,即可得,由∠AON=90°,可得.【詳解】證明:連結(jié),、關(guān)于對(duì)稱,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【點(diǎn)睛】本題是四邊形綜合題,主要考查了軸對(duì)稱的性質(zhì),等腰直角三角形的判定,全等三角形的判定與性質(zhì),綜合性較強(qiáng),有一定難度.準(zhǔn)確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問(wèn)題,往往利用全等,構(gòu)造等腰直角三角形,使問(wèn)題迅速獲解.5、(1)四邊形是菱形,證明見(jiàn)解析;(2)【分析】(1)先證明四邊形是平行四邊形,再
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年智能音箱(客房語(yǔ)音助手)項(xiàng)目營(yíng)銷方案
- 中西醫(yī)結(jié)合治療腎病綜合征
- 養(yǎng)老院信息化建設(shè)及管理規(guī)范制度
- 醫(yī)療健康數(shù)據(jù)共享與開放平臺(tái)建設(shè)
- 養(yǎng)老院興趣小組制度
- 養(yǎng)老院家屬溝通與反饋制度
- 柴進(jìn)人物介紹
- 醫(yī)療設(shè)備行業(yè)市場(chǎng)機(jī)遇與風(fēng)險(xiǎn)控制
- 坐骨神經(jīng)痛的針灸恢復(fù)
- 查詢凍結(jié)扣劃培訓(xùn)課件
- 2025年湖北警官學(xué)院馬克思主義基本原理概論期末考試真題匯編
- 河道工程測(cè)量施工方案
- 2025嵐圖汽車社會(huì)招聘參考題庫(kù)及答案解析(奪冠)
- 2025河南周口臨港開發(fā)區(qū)事業(yè)單位招才引智4人考試重點(diǎn)題庫(kù)及答案解析
- 2025年無(wú)人機(jī)資格證考試題庫(kù)+答案
- 登高作業(yè)監(jiān)理實(shí)施細(xì)則
- DB42-T 2462-2025 懸索橋索夾螺桿緊固力超聲拉拔法檢測(cè)技術(shù)規(guī)程
- 大學(xué)生擇業(yè)觀和創(chuàng)業(yè)觀
- 車載光通信技術(shù)發(fā)展及無(wú)源網(wǎng)絡(luò)應(yīng)用前景
- 工程倫理-形考任務(wù)四(權(quán)重20%)-國(guó)開(SX)-參考資料
- 初中書香閱讀社團(tuán)教案
評(píng)論
0/150
提交評(píng)論