考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試題(解析卷)_第1頁(yè)
考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試題(解析卷)_第2頁(yè)
考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試題(解析卷)_第3頁(yè)
考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試題(解析卷)_第4頁(yè)
考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析試題(解析卷)_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,正三角形PMN的頂點(diǎn)分別是正六邊形ABCDEF三邊的中點(diǎn),則三角形PMN與六邊形ABCDEF的面積之比()A.1:2 B.1:3 C.2:3 D.3:82、在平面直角坐標(biāo)系中,⊙O的半徑為2,點(diǎn)A(1,)與⊙O的位置關(guān)系是(

)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定3、如圖,⊙O的半徑為5,AB為弦,點(diǎn)C為的中點(diǎn),若∠ABC=30°,則弦AB的長(zhǎng)為()A. B.5 C. D.54、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o5、已知:如圖,PA,PB分別與⊙O相切于A,B點(diǎn),C為⊙O上一點(diǎn),∠ACB=65°,則∠APB等于()A.65° B.50° C.45° D.40°6、如圖,一個(gè)油桶靠在直立的墻邊,量得并且則這個(gè)油桶的底面半徑是()A. B. C. D.7、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.08、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與相交于點(diǎn),則的長(zhǎng)為(

)A.2 B. C.3 D.9、下列說(shuō)法:(1)長(zhǎng)度相等的弧是等??;(2)弦不包括直徑;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長(zhǎng)的弦.其中正確的有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10、往直徑為的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,已知是的直徑,是的切線,連接交于點(diǎn),連接.若,則的度數(shù)是_________.2、如圖所示是一個(gè)幾何體的三視圖,如果一只螞蟻從這個(gè)幾何體的點(diǎn)出發(fā),沿表面爬到的中點(diǎn)處,則最短路線長(zhǎng)為_(kāi)_________.3、如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0),⊙M是△ABC的外接圓,則點(diǎn)M的坐標(biāo)為_(kāi)__________.4、如圖,已知是的直徑,且,弦,點(diǎn)是弧上的點(diǎn),連接、,若,則的長(zhǎng)為_(kāi)_____.5、如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑畫(huà)弧,剛好過(guò)點(diǎn)O,以點(diǎn)D為圓心,DO的長(zhǎng)為半徑畫(huà)弧,交AD于點(diǎn)E,若AC=2,則圖中陰影部分的面積為_(kāi)____.(結(jié)果保留π)6、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.若AB=10,AE=1,則弦CD的長(zhǎng)是_____.7、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應(yīng)假設(shè):______.8、如圖所示的扇形中,,C為上一點(diǎn),,連接,過(guò)C作的垂線交于點(diǎn)D,則圖中陰影部分的面積為_(kāi)______.9、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點(diǎn)A,半徑為;的圓心為點(diǎn)B,半徑為;的圓心為點(diǎn)C,半徑為;的圓心為點(diǎn)D,半徑為;…的圓心依次按點(diǎn)A,B,C,D循環(huán).若正方形的邊長(zhǎng)為1,則的長(zhǎng)是_________.10、如圖,四邊形是的外切四邊形,且,,則四邊形的周長(zhǎng)為_(kāi)_________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,點(diǎn)A,B,C,D在⊙O上,=.求證:(1)AC=BD;(2)△ABE∽△DCE.2、問(wèn)題提出(1)如圖①,在△ABC中,AB=AC=10,BC=12,點(diǎn)O是△ABC的外接圓的圓心,則OB的長(zhǎng)為問(wèn)題探究(2)如圖②,已知矩形ABCD,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),以BC為直徑作半圓O,點(diǎn)P為半圓O上一動(dòng)點(diǎn),求E、P之間的最大距離;問(wèn)題解決(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對(duì)的劣弧場(chǎng)地組成的,果園主人現(xiàn)要從入口D到上的一點(diǎn)P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過(guò)弦BC的中點(diǎn)E作EF⊥BC交于點(diǎn)F,又測(cè)得EF=40米.修建小路平均每米需要40元(小路寬度不計(jì)),不考慮其他因素,請(qǐng)你根據(jù)以上信息,幫助果園主人計(jì)算修建這條小路最多要花費(fèi)多少元?3、如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=10,CD=8,求線段AE的長(zhǎng).4、如圖,直線l:y=2x+1與拋物線C:y=2x2+bx+c相交于點(diǎn)A(0,m),B(n,7).(1)填空:m=,n=,拋物線的解析式為.(2)將直線l向下移a(a>0)個(gè)單位長(zhǎng)度后,直線l與拋物線C仍有公共點(diǎn),求a的取值范圍.(3)Q是拋物線上的一個(gè)動(dòng)點(diǎn),是否存在以AQ為直徑的圓與x軸相切于點(diǎn)P?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.5、如圖,點(diǎn)C是射線上的動(dòng)點(diǎn),四邊形是矩形,對(duì)角線交于點(diǎn)O,的平分線交邊于點(diǎn)P,交射線于點(diǎn)F,點(diǎn)E在線段上(不與點(diǎn)P重合),連接,若.(1)證明:(2)點(diǎn)Q在線段上,連接、、,當(dāng)時(shí),是否存在的情形?請(qǐng)說(shuō)明理由.-參考答案-一、單選題1、D【解析】【分析】連接BE,設(shè)正六邊形的邊長(zhǎng)為a,首先證明△PMN是等邊三角形,分別求出△PMN,正六邊形ABCDEF的面積即可.【詳解】解:連接BE,設(shè)正六邊形的邊長(zhǎng)為a.則AF=a,BE=2a,AF∥BE,∵AP=PB,F(xiàn)N=NE,∴PN=(AF+BE)=1.5a,同理可得PM=MN=1.5a,∴PN=PM=MN,∴△PMN是等邊三角形,∴,故選:D.【考點(diǎn)】本題考查正多邊形與圓,等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問(wèn)題,屬于中考??碱}型.2、A【解析】【分析】根據(jù)點(diǎn)A的坐標(biāo),求出OA=2,根據(jù)點(diǎn)與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點(diǎn)A的坐標(biāo)為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點(diǎn)A在⊙O上.故選:A.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,點(diǎn)和圓的位置關(guān)系是由點(diǎn)到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當(dāng)時(shí),點(diǎn)在圓外;(2)當(dāng)時(shí),點(diǎn)在圓上;(3)當(dāng)時(shí),點(diǎn)在圓內(nèi).3、D【解析】【分析】連接OC、OA,利用圓周角定理得出∠AOC=60°,再利用垂徑定理得出AB即可.【詳解】連接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB為弦,點(diǎn)C為的中點(diǎn),∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故選D.【考點(diǎn)】此題考查圓周角定理,關(guān)鍵是利用圓周角定理得出∠AOC=60°.4、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.5、B【解析】【分析】連接OA,OB.根據(jù)圓周角定理和四邊形內(nèi)角和定理求解即可.【詳解】連接OA,OB,∵PA、PB切⊙O于點(diǎn)A、B,∴∠PAO=∠PBO=90°,由圓周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故選:B.【考點(diǎn)】本題考查了切線的性質(zhì)、圓周角定理、以及四邊形的內(nèi)角和為360度.6、C【解析】【分析】根據(jù)切線的性質(zhì),連接過(guò)切點(diǎn)的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設(shè)油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點(diǎn)A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點(diǎn)】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關(guān)鍵是理解和掌握切線的性質(zhì).7、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.8、C【解析】【分析】過(guò)C點(diǎn)作CH⊥AB于H點(diǎn),在△ABC、△CBH中由分別求出BC和BH,再由垂徑定理求出BD,進(jìn)而AD=AB-BD即可求解.【詳解】解:過(guò)C點(diǎn)作CH⊥AB于H點(diǎn),如下圖所示:∵∠ACB=90°,∠A=30°,∴△ABC、△CBH均為30°、60°、90°直角三角形,其三邊之比為,Rt△ABC中,,Rt△BCH中,,由垂徑定理可知:,∴,故選:C.【考點(diǎn)】本題考查了直角三角形30°角所對(duì)直角邊等于斜邊的一半,垂徑定理等知識(shí)點(diǎn),熟練掌握垂徑定理是解決本題的關(guān)鍵.9、A【解析】【分析】根據(jù)等弧的定義、弦的定義、弧的定義、分別判斷后即可確定正確的選項(xiàng).【詳解】解:(1)長(zhǎng)度相等的弧不一定是等弧,弧的度數(shù)必須相同,故錯(cuò)誤;(2)直徑是圓中最長(zhǎng)的弦,故(2)錯(cuò)誤,(4)正確;(3)同圓或等圓中劣弧一定比優(yōu)弧短,故錯(cuò)誤;正確的只有一個(gè),故選:A.【考點(diǎn)】本題考查了圓的有關(guān)定義,能夠了解圓的有關(guān)知識(shí)是解答本題的關(guān)鍵,難度不大.10、C【解析】【分析】過(guò)點(diǎn)O作OD⊥AB于D,交⊙O于E,連接OA,根據(jù)垂徑定理即可求得AD的長(zhǎng),又由⊙O的直徑為,求得OA的長(zhǎng),然后根據(jù)勾股定理,即可求得OD的長(zhǎng),進(jìn)而求得油的最大深度的長(zhǎng).【詳解】解:過(guò)點(diǎn)O作OD⊥AB于D,交⊙O于E,連接OA,由垂徑定理得:,∵⊙O的直徑為,∴,在中,由勾股定理得:,∴,∴油的最大深度為,故選:.【考點(diǎn)】本題主要考查了垂徑定理的知識(shí).此題難度不大,解題的關(guān)鍵是注意輔助線的作法,構(gòu)造直角三角形,利用勾股定理解決.二、填空題1、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對(duì)的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點(diǎn)】本題考查了切線的性質(zhì)和圓周角定理,掌握?qǐng)A周角定理是解題的關(guān)鍵.2、【解析】【分析】將圓錐的側(cè)面展開(kāi),設(shè)頂點(diǎn)為B',連接BB',AE.線段AC與BB'的交點(diǎn)為F,線段BF是最短路程.【詳解】如圖將圓錐側(cè)面展開(kāi),得到扇形ABB′,則線段BF為所求的最短路程.設(shè)∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E為弧BB′中點(diǎn),∴∠AFB=90°,∠BAF=60°,∴BF=AB?sin∠BAF=6×=,∴最短路線長(zhǎng)為.故答案為:.【考點(diǎn)】本題考查了平面展開(kāi)?最短路徑問(wèn)題,解題時(shí)注意把立體圖形轉(zhuǎn)化為平面圖形的思維.3、(6,6)【解析】【分析】如圖:由題意可得M在AB、BC的垂直平分線上,則BN=CN;證得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【詳解】解:如圖∵圓M是△ABC的外接圓∴點(diǎn)M在AB、BC的垂直平分線上,∴BN=CN,∵點(diǎn)A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,點(diǎn)M的坐標(biāo)為(6,6).故答案為(6,6).【考點(diǎn)】本題考查了三角形的外接圓與外心、坐標(biāo)與圖形性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識(shí),其中判定△OMN為等腰直角三角形是解答本題的關(guān)鍵.4、9【解析】【分析】連接OC和OE,由同弧所對(duì)的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對(duì)的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點(diǎn)】本題考查了圓周角定理及垂徑定理等相關(guān)知識(shí)點(diǎn),本題的關(guān)鍵是求出∠COB=60°.5、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據(jù)題目中的數(shù)據(jù),可以求得AB、OA、DE的長(zhǎng),∠BAO和∠EDO的度數(shù),從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點(diǎn)】本題主要考查扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.6、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計(jì)算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點(diǎn)】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.7、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點(diǎn)進(jìn)行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;

假設(shè)這兩條直線不平行,則兩條直線有交點(diǎn),因?yàn)檫^(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行因此,兩條直線有交點(diǎn)時(shí),它們不可能同時(shí)與第三條直線平行因此假設(shè)與結(jié)論矛盾.故假設(shè)不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點(diǎn)】本題主要考查了反證法,在解題時(shí)要根據(jù)反證法的特點(diǎn)進(jìn)行證明是本題的關(guān)鍵.8、【解析】【分析】先根據(jù)題目條件計(jì)算出OD,CD的長(zhǎng)度,判斷為等邊三角形,之后表示出陰影面積的計(jì)算公式進(jìn)行計(jì)算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點(diǎn)】本題考查了陰影面積的計(jì)算,熟知不規(guī)則陰影面積的計(jì)算方法是解題的關(guān)鍵.9、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計(jì)算弧長(zhǎng).【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長(zhǎng)=.故答案為:.【考點(diǎn)】此題主要考查了弧長(zhǎng)的計(jì)算,弧長(zhǎng)的計(jì)算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.10、48【解析】【分析】根據(jù)切線長(zhǎng)定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長(zhǎng)公式計(jì)算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長(zhǎng)=AD+BC+AB+CD=24+24=48,故答案為:48.【考點(diǎn)】本題考查了切線長(zhǎng)定理,掌握從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等是解題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析(2)見(jiàn)解析【解析】【分析】(1)兩個(gè)等弧同時(shí)加上一段弧后兩弧仍然相等;再通過(guò)同弧所對(duì)的弦相等證明即可;(2)根據(jù)同弧所對(duì)的圓周角相等,對(duì)頂角相等即可證明相似.(1)∵=∴=∴∴BD=AC(2)∵∠B=∠C;∠AEB=∠DEC∴△ABE∽△DCE【考點(diǎn)】本題考查等弧所對(duì)弦相等、所對(duì)圓周角相等,掌握這些是本題關(guān)鍵.2、(1);(2)E、P之間的最大距離為7;(3)修建這條小路最多要花費(fèi)元.【解析】【分析】(1)若AO交BC于K,則AK=8,在Rt△BOK中,設(shè)OB=x,可得x2=62+(8﹣x)2,解方程可得OB的長(zhǎng);(2)延長(zhǎng)EO交半圓于點(diǎn)P,可求出此時(shí)E、P之間的最大距離為OE+OP的長(zhǎng)即可;(3)先求出所在圓的半徑,過(guò)點(diǎn)D作DG⊥BC,垂足為G,連接DO并延長(zhǎng)交于點(diǎn)P,則DP為入口D到上一點(diǎn)P的最大距離,求出DP長(zhǎng)即可求出修建這條小路花費(fèi)的最多費(fèi)用.【詳解】(1)如圖,若AO交BC于K,∵點(diǎn)O是△ABC的外接圓的圓心,AB=AC,∴AK⊥BC,BK=,∴AK=,在Rt△BOK中,OB2=BK2+OK2,設(shè)OB=x,∴x2=62+(8?x)2,解得x=,∴OB=;故答案為:.(2)如圖,連接EO,延長(zhǎng)EO交半圓于點(diǎn)P,可求出此時(shí)E、P之間的距離最大,∵在是任意取一點(diǎn)異于點(diǎn)P的P′,連接OP′,P′E,∴EP=EO+OP=EO+OP′>EP′,即EP>EP′,∵AB=4,AD=6,∴EO=4,OP=OC=,∴EP=OE+OP=7,∴E、P之間的最大距離為7.(3)作射線FE交BD于點(diǎn)M,∵BE=CE,EF⊥BC,是劣弧,∴所在圓的圓心在射線FE上,假設(shè)圓心為O,半徑為r,連接OC,則OC=r,OE=r?40,BE=CE=,在Rt△OEC中,r2=802+(r?40)2,解得:r=100,∴OE=OF?EF=60,過(guò)點(diǎn)D作DG⊥BC,垂足為G,∵AD∥BC,∠ADB=45°,∴∠DBC=45°,在Rt△BDG中,DG=BG=,在Rt△BEM中,ME=BE=80,∴ME>OE,∴點(diǎn)O在△BDC內(nèi)部,∴連接DO并延長(zhǎng)交于點(diǎn)P,則DP為入口D到上一點(diǎn)P的最大距離,∵在上任取一點(diǎn)異于點(diǎn)P的點(diǎn)P′,連接OP′,P′D,∴DP=OD+OP=OD+OP′>DP′,即DP>DP′,過(guò)點(diǎn)O作OH⊥DG,垂足為H,則OH=EG=40,DH=DG?HG=DG?OE=60,∴,∴DP=OD+r=,∴修建這條小路最多要花費(fèi)40×元.【考點(diǎn)】本題主要考查了圓的性質(zhì)與矩形性質(zhì)的綜合運(yùn)用,熟練掌握相關(guān)方法是解題關(guān)鍵.3、2【解析】【分析】連接OC,利用直徑AB=10,則OC=OA=5,再由CD⊥AB,根據(jù)垂徑定理得CE=DE=CD=4,然后利用勾股定理計(jì)算出OE,再利用AE=OA-OE進(jìn)行計(jì)算即可.【詳解】連接OC,如圖,∵AB是⊙O的直徑,AB=10,∴OC=OA=5,∵CD⊥AB,∴CE=DE=CD=×8=4,在Rt△OCE中,OC=5,CE=4,∴OE==3,∴AE=OA﹣OE=5﹣3=2.【考點(diǎn)】本題考查了垂徑定理,掌握垂徑定理及勾股定理是關(guān)鍵.4、(1)1,3,y=2x2﹣4x+1(2)0<a(3)存在,P(1,0)或P(,0)【解析】【分析】(1)將A(0,m),B(n,7)代入y=2x+1,可求m、n的值,再將A(0,1),B(3,7)代入y=2x2+bx+c,可求函數(shù)解析式;(2)由題意可得y=2x+1-a,聯(lián)立,得到2x2-6x+a=0,再由判別式Δ≥0即可求a是取值范圍;(3)設(shè)Q(t,s),則,半徑,再由AQ2=t2+(s-1)2=(s+1)2,即可求t的值.(1)將A(0,m),B(n,7)代入y=2x+1,可得m=1,n=3,∴A(0,1),B(3,7),再將A(0,1),B(3,7)代入y=2x2+bx+c得,,可得,∴y=2x2﹣4x+1,故答案為:1,3,y=2x2﹣4x+1;(2)由題意可得y=2x+1﹣a,聯(lián)立,∴2x2﹣6x+a=0,∵直線l與拋物線C仍有公共點(diǎn)∴Δ=36﹣8a≥0,∴a,∴0<a;(3)存在以AQ為直徑的圓與x軸相切,理由如下:設(shè)Q(t,s),∴M(,),P(,0),∴半徑r,∵AQ2=t2+(s﹣1)2=(s+1)2,∴t2=4s,∵s=2t2﹣4t+1,∴t2=4(2t2﹣4t+1),∴t=2或t,∴P(1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論