版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,已知在正方形ABCD中,厘米,,點(diǎn)E在邊AB上,且厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上以a厘米/秒的速度由C點(diǎn)向D點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.若存在a與t的值,使與全等時(shí),則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或22、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長(zhǎng)為()A.2 B. C.4 D.3、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:14、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點(diǎn),連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時(shí),MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④5、如圖,菱形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長(zhǎng)度為()A.3 B.4 C.2.5 D.56、下列測(cè)量方案中,能確定四邊形門(mén)框?yàn)榫匦蔚氖牵ǎ〢.測(cè)量對(duì)角線是否互相平分 B.測(cè)量?jī)山M對(duì)邊是否分別相等C.測(cè)量對(duì)角線是否相等 D.測(cè)量對(duì)角線交點(diǎn)到四個(gè)頂點(diǎn)的距離是否都相等7、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗(yàn)證了勾股定理:以直角三角形ABC的三條邊為邊長(zhǎng)向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過(guò)點(diǎn)C作CJ⊥DE于點(diǎn)J,交AB于點(diǎn)K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長(zhǎng)方形AKJD的面積為S3,長(zhǎng)方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)8、如圖,陰影部分是將一個(gè)菱形剪去一個(gè)平行四邊形后剩下的,要想知道陰影部分的周長(zhǎng),需要測(cè)量一些線段的長(zhǎng),這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD9、菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.810、如圖,在長(zhǎng)方形ABCD中,AB=10cm,點(diǎn)E在線段AD上,且AE=6cm,動(dòng)點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段BC上.以vcm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),當(dāng)△EAP與△PBQ全等時(shí),v的值為()A.2 B.4 C.4或 D.2或第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為_(kāi)____.2、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為_(kāi)_____.3、如圖,點(diǎn)E,F(xiàn)在正方形ABCD的對(duì)角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_(kāi)____.4、如圖,矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE翻折至△AFE,連接CF,則CF的長(zhǎng)為_(kāi)__.5、如圖,在△ABC中,D,E分別是邊AB,AC的中點(diǎn),∠B=50°.現(xiàn)將△ADE沿DE折疊點(diǎn)A落在三角形所在平面內(nèi)的點(diǎn)為A1,則∠BDA1的度數(shù)為_(kāi)____.6、如圖,正方形紙片ABCD的邊長(zhǎng)為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長(zhǎng)為_(kāi)_________.7、已知Rt△ABC的周長(zhǎng)是24,斜邊上的中線長(zhǎng)是5,則S△ABC=_____.8、如圖,正方形的邊長(zhǎng)為4,它的兩條對(duì)角線交于點(diǎn),過(guò)點(diǎn)作邊的垂線,垂足為,的面積為,過(guò)點(diǎn)作的垂線,垂足為,△的面積為,過(guò)點(diǎn)作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.9、如圖,在正方形ABCD中,AB=2,取AD的中點(diǎn)E,連接EB,延長(zhǎng)DA至F,使EF=EB,以線段AF為邊作正方形AFGH,點(diǎn)H在線段AB上,則的值是_____.10、如圖,在直角三角形ABC中,∠B=90°,點(diǎn)D是AC邊上的一點(diǎn),連接BD,把△CBD沿著B(niǎo)D翻折,點(diǎn)C落在AB邊上的點(diǎn)E處,得到△EBD,連接CE交BD于點(diǎn)F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長(zhǎng)為_(kāi)___________三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知矩形中,點(diǎn),分別是,上的點(diǎn),,且.(1)求證:;(2)若,求:的值.2、在中,,斜邊,過(guò)點(diǎn)作,以AB為邊作菱形ABEF,若,求的面積.3、(1)先化簡(jiǎn),再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;(2)如圖,菱形ABCD中,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF.證明:四邊形AECF是矩形.4、在菱形ABCD中,∠ABC=60°,P是直線BD上一動(dòng)點(diǎn),以AP為邊向右側(cè)作等邊APE(A,P,E按逆時(shí)針排列),點(diǎn)E的位置隨點(diǎn)P的位置變化而變化.(1)如圖1,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD內(nèi)部或邊上時(shí),連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說(shuō)明理由;(3)當(dāng)點(diǎn)P在直線BD上時(shí),其他條件不變,連接BE.若AB=2,BE=2,請(qǐng)直接寫(xiě)出APE的面積.5、如圖,的對(duì)角線與相交于點(diǎn)O,過(guò)點(diǎn)B作BPAC,過(guò)點(diǎn)C作CPBD,與相交于點(diǎn)P.
(1)試判斷四邊形的形狀,并說(shuō)明理由;(2)若將改為矩形,且,其他條件不變,求四邊形的面積;(3)要得到矩形,應(yīng)滿足的條件是_________(填上一個(gè)即可).-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進(jìn)行求解即可.【詳解】解:當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運(yùn)動(dòng)時(shí)間t=4÷2=2(秒);當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間t=(秒).綜上t的值為2.5或2.故選:D.【點(diǎn)睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問(wèn)題的關(guān)鍵是掌握正方形的四條邊都相等,四個(gè)角都是直角;兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等.同時(shí)要注意分類思想的運(yùn)用.2、D【解析】【分析】根據(jù)菱形及矩形的性質(zhì)可得到∠BAC的度數(shù),從而根據(jù)直角三角形的性質(zhì)求得BC的長(zhǎng).【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質(zhì)可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點(diǎn)睛】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì),解決問(wèn)題的關(guān)鍵是根據(jù)折疊以及菱形的性質(zhì)發(fā)現(xiàn)特殊角,根據(jù)30°的直角三角形中各邊之間的關(guān)系求得BC的長(zhǎng).3、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補(bǔ).4、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯(cuò)誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點(diǎn)P是BC的中點(diǎn)∴PM、PN分別是兩個(gè)直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯(cuò)誤當(dāng)∠ABC=60゜時(shí),△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點(diǎn)∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點(diǎn)睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識(shí),掌握這些知識(shí)并正確運(yùn)用是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長(zhǎng),進(jìn)而根據(jù)三角形中位線定理求得的長(zhǎng)度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長(zhǎng)是解題的關(guān)鍵.6、D【解析】【分析】由平行四邊形的判定與性質(zhì)、矩形的判定分別對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、∵對(duì)角線互相平分的四邊形是平行四邊形,∴對(duì)角線互相平分且相等的四邊形才是矩形,∴選項(xiàng)A不符合題意;B、∵兩組對(duì)邊分別相等是平行四邊形,∴選項(xiàng)B不符合題意;C、∵對(duì)角線互相平分且相等的四邊形才是矩形,∴對(duì)角線相等的四邊形不是矩形,∴選項(xiàng)C不符合題意;D、∵對(duì)角線交點(diǎn)到四個(gè)頂點(diǎn)的距離都相等,∴對(duì)角線互相平分且相等,∵對(duì)角線互相平分且相等的四邊形是矩形,∴選項(xiàng)D符合題意;故選:D.【點(diǎn)睛】本題考查了矩形的判定、平行四邊形的判定與性質(zhì)、解題的關(guān)鍵是熟記矩形的判定定理.7、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過(guò)點(diǎn)B作BM⊥IA,交IA的延長(zhǎng)線于點(diǎn)M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過(guò)點(diǎn)C作CN⊥DA交DA的延長(zhǎng)線于點(diǎn)N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過(guò)點(diǎn)B作BM⊥IA,交IA的延長(zhǎng)線于點(diǎn)M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過(guò)點(diǎn)C作CN⊥DA交DA的延長(zhǎng)線于點(diǎn)N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯(cuò)誤;綜上,共有3個(gè)正確的結(jié)論,故選:C.【點(diǎn)睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識(shí),熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.8、A【解析】【分析】如圖,延長(zhǎng),交于點(diǎn),證明,,再利用菱形的性質(zhì)證明:陰影部分的周長(zhǎng),從而可得答案.【詳解】解:如圖,延長(zhǎng),交于點(diǎn),四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長(zhǎng),故需要測(cè)量的長(zhǎng)度,故選A.【點(diǎn)睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長(zhǎng)是解本題的關(guān)鍵.9、A【解析】【分析】根據(jù)中位線定理可得對(duì)角線AC的長(zhǎng),再由菱形面積等于對(duì)角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.10、D【解析】【分析】根據(jù)題意可知當(dāng)△EAP與△PBQ全等時(shí),有兩種情況:①當(dāng)EA=PB時(shí),△APE≌△BQP,②當(dāng)AP=BP時(shí),△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問(wèn)題的基本數(shù)量關(guān)系求解即可.【詳解】解:當(dāng)△EAP與△PBQ全等時(shí),有兩種情況:①當(dāng)EA=PB時(shí),△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動(dòng)點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),∴點(diǎn)P和點(diǎn)Q的運(yùn)動(dòng)時(shí)間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當(dāng)AP=BP時(shí),△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點(diǎn)睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),注意數(shù)形結(jié)合和分類討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.二、填空題1、【解析】【分析】由正方形的對(duì)稱性可知,PB=PD,當(dāng)B、P、E共線時(shí)PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對(duì)稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時(shí)PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點(diǎn)睛】本題考查軸對(duì)稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.2、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).3、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對(duì)角線相等且互相垂直平分是解題的關(guān)鍵.4、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點(diǎn)E為BC的中點(diǎn),∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解題的關(guān)鍵.5、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問(wèn)題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點(diǎn),∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問(wèn)題;同時(shí)還考查了三角形的中位線定理等幾何知識(shí)點(diǎn).熟練掌握各性質(zhì)是解題的關(guān)鍵.6、##【解析】【分析】由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長(zhǎng),再利用勾股定理求出BF的長(zhǎng),最后在Rt△ABF中利用面積法可求出AH的長(zhǎng),可進(jìn)一步求出AG的長(zhǎng),GE的長(zhǎng).【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長(zhǎng)度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對(duì)稱的性質(zhì).7、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長(zhǎng)求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點(diǎn)D為AB中點(diǎn),為RtABC斜邊上的中線,,,,,,,由,,∴S△ABC=.故答案為:24.【點(diǎn)睛】本題考查的是直角三角形斜邊上的中線的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識(shí)是解題的關(guān)鍵.8、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過(guò)計(jì)算三角形的面積得出規(guī)律.9、【解析】【分析】設(shè),由正方形的性質(zhì)和勾股定理求出的長(zhǎng),可得的長(zhǎng),再求出的長(zhǎng),得出的長(zhǎng),進(jìn)而可得結(jié)果.【詳解】解:設(shè),四邊形為正方形,,,點(diǎn)為的中點(diǎn),,,,,四邊形為正方形,,,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì)以及勾股定理,解題的關(guān)鍵是熟練掌握正方形的性質(zhì),由勾股定理求出的長(zhǎng).10、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長(zhǎng)度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點(diǎn),∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點(diǎn)睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進(jìn)行求解.三、解答題1、(1)見(jiàn)解析;(2)【分析】(1)根據(jù)矩形的性質(zhì)得到,由垂直的定義得到,根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的判定和性質(zhì)即可得到結(jié)論;(2)由已知條件得到,由,即可得到:的值.【詳解】(1)∵四邊形是矩形,∴,∵,∴,∴,∴,在與中,,∴,∴;(2)∵,∴,∵,∴,∴.【點(diǎn)睛】本題考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.2、4【分析】分別過(guò)點(diǎn)E、C作EH、CG垂直AB,垂足為點(diǎn)H、G,則CG是斜邊AB上的高;在菱形ABEF中,利用平行線的性質(zhì)不難得到CG=EH;菱形的對(duì)角相等,四條邊相等,聯(lián)系含30°角的直角三角形的性質(zhì)求出EH,問(wèn)題即可解答?!驹斀狻拷猓喝鐖D,分別過(guò)作垂足為點(diǎn)四邊形ABEF為菱形,,,,在中,,根據(jù)題意,,根據(jù)平行線間的距離處處相等,.答:的面積為4.【點(diǎn)睛】本題考查了菱形的性質(zhì),直角三角形的性質(zhì),平行線間的距離及三角形面積的計(jì)算,正確利用菱形的四邊相等及直角三角形中,30角所對(duì)直角邊是斜邊的一半是解題的關(guān)鍵.3、(1),0;(2)證明見(jiàn)解析.【分析】(1)根據(jù)整式的乘法運(yùn)算法則先去括號(hào),然后合并同類項(xiàng)化簡(jiǎn),然后代入求解即可;(2)首先根據(jù)菱形的性質(zhì)得到,,然后根據(jù)E、F分別是BC、AD的中點(diǎn),得出,根據(jù)一組對(duì)邊平行且相等證明出四邊形AECF是平行四邊形,然后根據(jù)等腰三角形三線合一的性質(zhì)得出,即可證明出四邊形AECF是矩形.【詳解】(1)(a+b)(a﹣b)﹣a(a﹣2b)將a=1,b=2代入得:原式=;(2)如圖所示,∵四邊形ABCD是菱形,∴,且,又∵E、F分別是BC、AD的中點(diǎn),∴,∴四邊形AECF是平行四邊形,∵AB=AC,E是BC的中點(diǎn),∴,即,∴平行四邊形AECF是矩形.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,代數(shù)式求值問(wèn)題,菱形的性質(zhì)和矩形的判定,解題的關(guān)鍵是熟練掌握整式的混合運(yùn)算法則,菱形的性質(zhì)和矩形的判定定理.4、(1)BP=CE,CE⊥BC;(2)仍然成立,見(jiàn)解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點(diǎn)P在BD的延長(zhǎng)線上時(shí)或點(diǎn)P在線段DB的延長(zhǎng)線上時(shí),連接AC交BD于點(diǎn)O,由∠BCE=90°,根據(jù)勾股定理求出CE的長(zhǎng)即得到BP的長(zhǎng),再求AO、PO、PD的長(zhǎng)及等邊三角形APE的邊長(zhǎng)可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長(zhǎng)CE交AD于點(diǎn)H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設(shè)CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓(xùn)班服裝出入庫(kù)制度
- 酒店培訓(xùn)調(diào)配管理制度
- 主治醫(yī)師培訓(xùn)管理制度
- 美術(shù)培訓(xùn)中心考核制度
- 卒中相關(guān)人員培訓(xùn)制度
- 煲湯培訓(xùn)制度及流程
- 保育員培訓(xùn)儀容儀表制度
- 后勤業(yè)務(wù)人員培訓(xùn)制度
- 心理講師培訓(xùn)制度及流程
- 培訓(xùn)機(jī)構(gòu)家長(zhǎng)規(guī)章制度
- GB.T19418-2003鋼的弧焊接頭 缺陷質(zhì)量分級(jí)指南
- 污水管網(wǎng)監(jiān)理規(guī)劃
- GB/T 35273-2020信息安全技術(shù)個(gè)人信息安全規(guī)范
- 2023年杭州臨平環(huán)境科技有限公司招聘筆試題庫(kù)及答案解析
- 《看圖猜成語(yǔ)》課件
- LF爐機(jī)械設(shè)備安裝施工方案
- 企業(yè)三級(jí)安全生產(chǎn)標(biāo)準(zhǔn)化評(píng)定表(新版)
- 耐壓測(cè)試儀點(diǎn)檢記錄表
- 梅州市梅江區(qū)村級(jí)資金財(cái)務(wù)管理制度(試行)
- GB∕T 37127-2018 混凝土結(jié)構(gòu)工程用錨固膠
- 胸腺瘤與重癥肌無(wú)力手術(shù)治療課件
評(píng)論
0/150
提交評(píng)論