版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省曲阜市中考數(shù)學經(jīng)典例題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、一元二次方程x2-3x+1=0的根的情況是(
).A.沒有實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.有兩個不相等的實數(shù)根2、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形3、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點C為優(yōu)弧上的一個動點,則面積的最大值是()A. B. C. D.4、在同一坐標系中,二次函數(shù)與一次函數(shù)的圖像可能是(
)A. B.C. D.5、在一個不透明的口袋中,裝有若干個除顏色不同其余都相同的球,如果口袋中裝有4個黑球且摸到黑球的概率為,那么口袋中球的總數(shù)為()A.12個 B.9個 C.6個 D.3個二、多選題(5小題,每小題3分,共計15分)1、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點.則以下結論正確的有(
)A.B.當時,y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點D.若線段AB上有且只有5個橫坐標為整數(shù)的點,則a的取值范圍是2、下列命題中,不正確的是(
)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內部或外部3、下列關于圓的敘述正確的有()A.對角互補的四邊形是圓內接四邊形B.圓的切線垂直于圓的半徑C.正多邊形中心角的度數(shù)等于這個正多邊形一個外角的度數(shù)D.過圓外一點所畫的圓的兩條切線長相等4、下列各組圖形中,由左邊變成右邊的圖形,分別進行了平移、旋轉、軸對稱、中心對稱等變換,其中進行了旋轉變換的是(
)組,進行軸對稱變換的是(
).A. B. C. D.5、下列四個命題中正確的是(
)A.與圓有公共點的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過圓直徑的端點,垂直于此直徑的直線是該圓的切線第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在中,,,則圖中陰影部分的面積是_________.(結果保留)2、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.3、已知關于的方程的一個根是,則____.4、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點C逆時針旋轉60°,得到△MNC,那么BM=______________.5、把一個正六邊形繞其中心旋轉,至少旋轉________度,可以與自身重合.四、簡答題(2小題,每小題10分,共計20分)1、(1)方法導引:問題:如圖1,等邊三角形的邊長為6,點是和的角平分線交點,,繞點任意旋轉,分別交的兩邊于,兩點.求四邊形面積.討論:①小明:在旋轉過程中,當經(jīng)過點時,一定經(jīng)過點.②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因為,所以只要算出的面積就得出了四邊形的面積.老師:同學們的思路很清晰,也很正確.在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題:請你按照討論的思路,直接寫出四邊形的面積:________.(2)應用方法:①特例:如圖2,的頂點在等邊三角形的邊上,,,邊于點,于點,求的面積.②探究:如圖3,已知,頂點在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應用:如圖4,已知,頂點在等邊三角形的邊的延長線上,,,記的面積為,的面積為,請直接寫出與的關系式.
2、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?五、解答題(4小題,每小題10分,共計40分)1、某賓館共有80間客房.賓館負責人根據(jù)經(jīng)驗作出預測:今年5月份,每天的房間空閑數(shù)y(間)與定價x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運營成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費用,賓館想要獲得最大利潤,同時也想讓客人得到實惠.(1)求入住房間z(間)與定價x(元/間)之間關系式;(2)應將房間定價確定為多少元時,獲得利潤最大?求出最大利潤?2、(1)解方程:(2)我國古代數(shù)學專著《九章算術》中記載:“今有宛田,下周三十步,徑十六步,問為田幾何?”注釋:宛田是指扇形形狀的田,下周是指弧長,徑是指扇形所在圓的直徑.求這口宛田的面積.3、將銳角為45°的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉,∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點E、F,連接EF.(1)在三角板旋轉過程中,當∠MPN的兩邊分別與正方形的邊CB、DC相交時,如圖1所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關系;(2)在三角板旋轉過程中,當∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時,如圖2所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關系;(3)若正方形的邊長為4,在三角板旋轉過程中,當∠MPN的一邊恰好經(jīng)過BC邊的中點時,試求線段EF的長.4、已知P為⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑。(2)如圖2,連接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,設∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關系。-參考答案-一、單選題1、D【解析】【分析】根據(jù)一元二次方程判別式的性質分析,即可得到答案.【詳解】∵∴x2-3x+1=0有兩個不相等的實數(shù)根故選:D.【考點】本題考查了一元二次方程的知識;解題的關鍵是熟練掌握一元二次方程判別式的性質,從而完成求解.2、A【分析】根據(jù)等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關鍵.3、C【分析】如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結論.【詳解】解:如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識,解題的關鍵是求出CT的最大值,屬于中考??碱}型.4、C【解析】【分析】直線與拋物線聯(lián)立解方程組,若有解,則圖象有交點,若無解,則圖象無交點;根據(jù)二次函數(shù)的對稱軸在y左側,a,b同號,對稱軸在y軸右側a,b異號,以及當a大于0時開口向上,當a小于0時開口向下,來分析二次函數(shù);同時在假定二次函數(shù)圖象正確的前提下,根據(jù)一次函數(shù)的一次項系數(shù)為正,圖象從左向右逐漸上升,一次項系數(shù)為負,圖象從左向右逐漸下降;一次函數(shù)的常數(shù)項為正,交y軸于正半軸,常數(shù)項為負,交y軸于負半軸.如此分析下來,二次函數(shù)與一次函數(shù)無矛盾者為正確答案.【詳解】解:由方程組得ax2=?a,∵a≠0∴x2=?1,該方程無實數(shù)根,故二次函數(shù)與一次函數(shù)圖象無交點,排除B.A:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側,則b<0;但是一次函數(shù)b為一次項系數(shù),圖象顯示從左向右上升,b>0,兩者矛盾,故A錯;C:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側,則b<0;b為一次函數(shù)的一次項系數(shù),圖象顯示從左向右下降,b<0,兩者相符,故C正確;D:二次函數(shù)的圖象應過原點,此選項不符,故D錯.故選C.【考點】本題考查的是同一坐標系中二次函數(shù)與一次函數(shù)的圖象問題,必須明確二次函數(shù)的開口方向與a的正負的關系,a,b的符號與對稱軸的位置關系,并結合一次函數(shù)的相關性質進行分析,本題中等難度偏上.5、A【解析】【詳解】解:∵口袋中裝有4個黑球且摸到黑球的概率為,∴口袋中球的總數(shù)為:4÷=12(個).故選A.二、多選題1、ACD【解析】【分析】求得頂點坐標,根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點,即可判斷③錯誤;根據(jù)題意時,時,即可判斷④正確.【詳解】解:二次函數(shù),頂點為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點,拋物線開口向上,,故①正確;時,隨的增大而增大,故②錯誤;由題意可知當,二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點,故③正確;線段上有且只有5個橫坐標為整數(shù)的點,且對稱軸為直線,∴當時,,當時,,,解得,故④正確;故選:ACD.【考點】本題考查了二次函數(shù)的性質,二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)圖象上點的坐標特征,能夠理解題意,利用二次函數(shù)的性質解答是解題的關鍵.2、ABD【解析】【分析】根據(jù)圓的性質定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關鍵.3、ACD【解析】【分析】根據(jù)圓內接四邊形性質直接可判斷A選項正確;利用切線的性質可判斷B選項錯誤;根據(jù)正多邊形中心角的定義和多邊形外角和可對判斷C選項正確;根據(jù)切線長定理可判斷D選項正確.【詳解】A.由圓內接四邊形定義得:對角互補的四邊形是圓內接四邊形,A選項正確;B.圓的切線垂直于過切點的半徑,B選項錯誤;C.正多邊形中心角的度數(shù)等于這個正多邊形一個外角的度數(shù),都等于,C選項正確;D.過圓外一點引的圓的兩條切線,則切線長相等,D選項正確.故選:ACD.【考點】本題考查了正多邊形與圓、切線的性質和確定圓的條件,解題關鍵是熟練掌握有關的概念.4、AC【解析】【分析】旋轉是一個圖形繞著一個定點旋轉一定的角度,各對應點之間的位置關系也保持不變;在平面內,如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.據(jù)此即可解答.【詳解】由旋轉是一個圖形繞著一個定點旋轉一定的角度,各對應點之間的位置關系也保持不變,分析可得,進行旋轉變換的是A;左邊圖形能軸對稱變換得到右邊圖形,則進行軸對稱變換的是C;根據(jù)平移是將一個圖形從一個位置變換到另一個位置,各對應點間的連線平行,分析可得,D是平移變化;故答案為:A;C.【考點】本題考查了幾何變換的定義,注意結合幾何變換的定義,分析圖形的位置的關系,特別是對應點之間的關系.5、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點的直線是圓的切線.掌握切線的判定:①經(jīng)過半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個公共點的直線,是圓的割線,故該選項不符合題意;B中,應經(jīng)過此半徑的外端,故該選項不符合題意;C中,根據(jù)切線的判定方法,故該選項符合題意;D中,根據(jù)切線的判定方法,故該選項符合題意.故選:CD.【考點】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關鍵.三、填空題1、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據(jù)題意求得三角形與扇形的面積是解答此題的關鍵.2、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質、相似三角形的判定與性質、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質是解答的關鍵.3、【解析】【分析】根據(jù)一元二次方程解的定義將x=1代入即可求出a的值.【詳解】解:∵關于的方程的一個根是∴解得:a=-1故答案為:.【考點】此題考查的是根據(jù)一元二次方程的解,求參數(shù)的值,掌握一元二次方程解的定義是解決此題的關鍵.4、【分析】設BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點C逆時針旋轉60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵MF⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點睛】本題考查等腰三角形性質、等邊三角形的性質及判定,解題的關鍵是證明∠CDB=90°.5、60【分析】正六邊形連接各個頂點和中心,這些連線會將360°分成6分,每份60°因此至少旋轉60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點睛】本題考查中心對稱圖形的性質,根據(jù)圖形特征找到最少旋轉度數(shù)是本題關鍵.四、簡答題1、(1);(2)①的面積;②xy=12;③.【解析】【分析】(1)連接、,利用ASA證出,從而得出的面積與四邊形的面積相等,過點作于點,利用銳角三角函數(shù)求出OH即可求出△OBC的面積,從而得出結論;(2)①根據(jù)等邊三角形的性質可得,從而求出∠BOD,然后根據(jù)30°所對的直角邊是斜邊的一半和勾股定理即可求出OD和BD,從而求出結論;②過點作于,于,根據(jù)相似三角形判定定理可得,根據(jù)相似三角形的性質列出比例式,變形可得,然后根據(jù)三角形的面積公式即可求出結論;③過點作交的延長線于,于,根據(jù)相似三角形的判定定理可得,根據(jù)相似三角形的性質列出比例式,變形可得,分別求出OM和ON,再結合三角形的面積公式即可求出結論.【詳解】解:(1)連接、∵是等邊三角形,∴∵是和的角平分線交點∴∴,∴∴∴的面積與四邊形的面積相等過點作于點∵,∴∵,∴,∴∴四邊形的面積為.故答案為:.(2)①∵是等邊三角形,∴∵于點,∴∵,∴,,∴的面積②過點作于,于.由①得:,同理:∵是等邊三角形,∴∵,∴∴,∴∴,∴∴③過點作交的延長線于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考點】此題考查的是全等三角形的判定及性質、等邊三角形的性質、相似三角形的判定及性質和銳角三角函數(shù),掌握全等三角形的判定及性質、等邊三角形的性質、相似三角形的判定及性質和銳角三角函數(shù)是解決此題的關鍵.2、△AFD∽△EFB,△ABC∽△ADE;理由見解析.【解析】【分析】根據(jù)兩個三角形的兩組角對應相等,那么這兩個三角形互為相似三角形證明即可.【詳解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考點】本題考查相似三角形的判定定理,熟記判定定理,本題用到了兩組角對應相等的兩個三角形互為相似三角形.五、解答題1、(1)z=﹣x+122(x≥168);(2)應將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元【解析】【分析】(1)入住房間z(間)等于80減去每天的房間空閑數(shù),列式并化簡即可;(2)設利潤為w元,由題意得w關于x的二次函數(shù)關系式,根據(jù)二次函數(shù)的對稱性及問題實際可得答案.【詳解】解:(1)由題意得:z=80﹣(x﹣42)=﹣x+122,∴入住房間z(間)與定價x(元/間)之間關系式為z=﹣x+122(x≥168);(2)設利潤為w元,由題意得:w=(﹣x+122)x﹣36(﹣x+122)﹣4000=﹣x2+131x﹣8392,當x=﹣=262時,w最大,此時z=56.5非整數(shù),不合題意,∴x=260或264時,w最大,∵讓客人得到實惠,∴x=260,∴w最大==﹣×2602+131×260﹣8392=8767,∴應將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元.【考點】本題考查了二次函數(shù)在實際問題中的應用,理清題中的數(shù)量關系、熟練掌握二次函數(shù)的性質是解題的關鍵.2、(1),;(2)平方步【分析】(1)利用配方法,即可求解;(2)利用扇形的面積公式,即可求解.【詳解】解:(1),,配方,得,∴,∴,;(2)解:∵扇形的田,弧長30步,其所在圓的直徑是16步,∴這塊田的面積(平方步).【點睛】本題主要考查了解一元二次方程,求扇形的面積,熟練掌握一元二次方程的解法,扇形的面積等于乘以弧長再乘以扇形的半徑是解題的關鍵.3、(1)EF=DF+BE;(2)EF=DF-BE;(3)線段EF的長為或.【分析】(1)延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF即可;(2)在DC上截取DH=BE,連接AH,先證△ADH≌△ABE,再證△HAF≌EAF即可;(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)結論:EF=BE+DF.理由:延長FD至G,使DG=BE,連接AG,如圖①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)結論:EF=DF-BE.理由:在DC上截取DH=BE,連接AH,如圖②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超重型汽車列車掛車工安全生產(chǎn)規(guī)范評優(yōu)考核試卷含答案
- 液晶顯示器件彩膜制造工操作管理考核試卷含答案
- 選礦脫水工創(chuàng)新意識評優(yōu)考核試卷含答案
- 電梯機械裝配工崗前工作能力考核試卷含答案
- 顏料化操作工風險評估強化考核試卷含答案
- 醫(yī)用供氣工操作安全水平考核試卷含答案
- 吸油煙機制作工操作強化考核試卷含答案
- 2024年河池學院輔導員考試筆試題庫附答案
- 2024年白銀市特崗教師筆試真題匯編附答案
- 2025寧夏回族自治區(qū)公務員考試《行測》題庫及參考答案
- 天然氣供氣工程安全交底
- 《工業(yè)機器人系統(tǒng)操作員三級(高級)理論知識考核要素細目表》
- 航天器多功能散熱結構設計-洞察及研究
- 政治●天津卷丨2024年天津市普通高中學業(yè)水平選擇性考試政治試卷及答案
- 福州戶外顯示屏管理制度
- 檢察案卡填錄規(guī)范課件
- 2025江漢藝術職業(yè)學院輔導員考試題庫
- 醫(yī)院內控制度
- 非煤地下礦山機電知識
- 《高危作業(yè)培訓》課件
- 浙江省杭州市富陽區(qū)2023-2024學年四年級上學期語文期末試卷
評論
0/150
提交評論