版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
A2Physics物理出國(guó)英語(yǔ)1.4Materials
1.Density
1.Definedensity
Density($\rho$)isdefinedasthemass($m$)perunitvolume($V$)ofasubstance.Theformulais$\rho=\frac{m}{V}$.Forexample,ifablockofmetalhasamassof500gandavolumeof100$cm^3$,thenthedensity$\rho=\frac{500\g}{100\cm^3}=5\g/cm^3$.InSIunits,densityismeasuredin$kg/m^3$.Toconvertfrom$g/cm^3$to$kg/m^3$,weusetheconversionfactor:$1\g/cm^3=1000\kg/m^3$.So,$5\g/cm^3=5000\kg/m^3$.
2.Understandtheconceptofrelativedensity
Relativedensity(alsoknownasspecificgravity)istheratioofthedensityofasubstancetothedensityofareferencesubstance.Usually,forliquidsandsolids,thereferencesubstanceiswaterat4°C(wherethedensityofwater$\rho_{water}=1000\kg/m^3$).Forexample,ifthedensityofaliquidis800$kg/m^3$,itsrelativedensity$RD=\frac{\rho_{liquid}}{\rho_{water}}=\frac{800\kg/m^3}{1000\kg/m^3}=0.8$.
3.Explainhowdensityvarieswithtemperatureandstateofmatter
Formostsubstances,densitydecreasesastemperatureincreases.Thisisbecauseasthetemperaturerises,thevolumeofthesubstanceusuallyexpandswhilethemassremainsconstant.Accordingtothedensityformula$\rho=\frac{m}{V}$,anincreasein$V$withconstant$m$leadstoadecreasein$\rho$.Forexample,whenwaterisheatedfrom0°Cto4°C,itsvolumedecreases,sothedensityincreases.Above4°C,asthetemperaturecontinuestorise,thevolumeofwaterexpands,andthedensitydecreases.
Whenasubstancechangesitsstatefromsolidtoliquidorfromliquidtogas,thedensitygenerallydecreases.Inthesolidstate,theparticlesarecloselypacked,sothevolumeisrelativelysmallandthedensityishigh.Intheliquidstate,theparticleshavemorefreedomtomove,andthevolumeislarger,resultinginalowerdensity.Inthegaseousstate,theparticlesarefarapart,andthedensityismuchlower.Forexample,thedensityoficeisabout920$kg/m^3$,whilethedensityofwateris1000$kg/m^3$,andthedensityofwatervaporismuchlessthanthatofliquidwater.
2.Hooke'sLaw
1.StateHooke'sLaw
Hooke'sLawstatesthattheforce($F$)appliedtoanelasticobject(suchasaspring)isdirectlyproportionaltotheextension($x$)oftheobject,providedtheelasticlimitisnotexceeded.Mathematically,itisexpressedas$F=kx$,where$k$isthespringconstant.Thespringconstantrepresentsthestiffnessofthespring.Alarger$k$valuemeansthespringisstifferandrequiresmoreforcetoproduceagivenextension.Forexample,ifaspringhasaspringconstant$k=20\N/m$,andanextension$x=0.1\m$isproduced,thentheforceapplied$F=kx=(20\N/m)\times(0.1\m)=2\N$.
2.Understandtheelasticlimit
Theelasticlimitisthemaximumforceorextensionuptowhichanobjectwillreturntoitsoriginalshapeandsizewhenthedeformingforceisremoved.Iftheforceappliedexceedstheelasticlimit,theobjectwillundergoplasticdeformation.Forexample,whenametalwireisstretchedbeyonditselasticlimit,itwillnotreturntoitsoriginallengthwhenthestretchingforceisremoved.
3.Determinethespringconstantfromaforceextensiongraph
Onaforceextensiongraph,thespringconstant$k$isequaltotheslopeofthestraightlineportionofthegraph.Theslopeiscalculatedas$k=\frac{\DeltaF}{\Deltax}$.Forexample,ifonagraph,whentheforcechangesfrom2Nto6Nandtheextensionchangesfrom0.1mto0.3m,then$k=\frac{6\N2\N}{0.3\m0.1\m}=\frac{4\N}{0.2\m}=20\N/m$.
3.Young'sModulus
1.Definestress,strain,andYoung'sModulus
Stress($\sigma$)isdefinedastheforce($F$)appliedperunitcrosssectionalarea($A$)ofamaterial.Theformulais$\sigma=\frac{F}{A}$.Forexample,ifaforceof500Nisappliedtoawirewithacrosssectionalareaof$2\times10^{6}\m^2$,thenthestress$\sigma=\frac{500\N}{2\times10^{6}\m^2}=2.5\times10^8\Pa$.
Strain($\epsilon$)istheratiooftheextension($x$)totheoriginallength($L$)ofthematerial,i.e.,$\epsilon=\frac{x}{L}$.Forexample,ifawireoforiginallength2misstretchedby0.01m,thenthestrain$\epsilon=\frac{0.01\m}{2\m}=0.005$.
Young'sModulus($E$)istheratioofstresstostrainwithintheelasticlimitofamaterial.Theformulais$E=\frac{\sigma}{\epsilon}$.Itisameasureofthestiffnessofamaterial.Forexample,ifthestressonamaterialis$3\times10^8\Pa$andthestrainis0.003,thenYoung'sModulus$E=\frac{3\times10^8\Pa}{0.003}=1\times10^{11}\Pa$.
2.UnderstandthesignificanceofYoung'sModulus
Young'sModulusprovidesinformationabouthowdifficultitistostretchorcompressamaterial.AlargeYoung'sModulusmeansthematerialisstifferandrequiresalargestresstoproduceasmallstrain.Forexample,steelhasarelativelylargeYoung'sModulus(about$2\times10^{11}\Pa$),whichmeansitisdifficulttostretchcomparedtoamateriallikerubber,whichhasamuchsmallerYoung'sModulus.
3.CalculateYoung'sModulusfromexperimentaldata
InanexperimenttomeasureYoung'sModulus,wemeasuretheforceappliedtoawire,thecrosssectionalareaofthewire,theoriginallengthofthewire,andtheextensionofthewire.First,wecalculatethestress$\sigma=\frac{F}{A}$andthestrain$\epsilon=\frac{x}{L}$.ThenwefindYoung'sModulus$E=\frac{\sigma}{\epsilon}$.Forexample,wemeasureaforce$F=100\N$,thecrosssectionalareaofthewire$A=1\times10^{6}\m^2$,theoriginallength$L=1\m$,andtheextension$x=0.0005\m$.Thestress$\sigma=\frac{100\N}{1\times10^{6}\m^2}=1\times10^8\Pa$,thestrain$\epsilon=\frac{0.0005\m}{1\m}=0.0005$,andYoung'sModulus$E=\frac{1\times10^8\Pa}{0.0005}=2\times10^{11}\Pa$.
4.ElasticandPlasticDeformation
1.Differentiatebetweenelasticandplasticdeformation
Elasticdeformationisareversiblechangeintheshapeorsizeofamaterial.Whenthedeformingforceisremoved,thematerialreturnstoitsoriginalshapeandsize.Thisoccurswithintheelasticlimitofthematerial.Forexample,whenaspringisstretchedwithinitselasticlimitandthenreleased,itreturnstoitsoriginallength.
Plasticdeformationisanirreversiblechangeintheshapeorsizeofamaterial.Oncethematerialhasundergoneplasticdeformation,itwillnotreturntoitsoriginalshapewhenthedeformingforceisremoved.Thisoccurswhentheforceappliedexceedstheelasticlimitofthematerial.Forexample,whenametalrodisbentbeyonditselasticlimit,itretainsthebentshape.
2.Understandthebehaviorofmaterialsduringelasticandplasticdeformationonastressstraingraph
Onastressstraingraph,theelasticregionisthestraightlineportionwherethestressisdirectlyproportionaltothestrain,followingHooke'sLaw.Inthisregion,thematerialexhibitselasticdeformation.TheslopeofthisstraightlineportionistheYoung'sModulus.
Beyondtheelasticlimit,thegraphcurves,andthematerialenterstheplasticdeformationregion.Inthisregion,asmallincreaseinstresscancausealargeincreaseinstrain.Eventually,thematerialmayreachitsultimatetensilestrength,whichisthemaximumstressthematerialcanwithstand.Afterreachingtheultimatetensilestrength,thematerialmaystarttoneck(alocalreductionincrosssectionalarea)andfinallybreak.
5.EnergyStoredinaDeformedMaterial
1.Deriveandusetheformulaforelasticpotentialenergyinastretchedspring
Theworkdoneinstretchingaspringisstoredaselasticpotentialenergy($E_p$).Theforcerequiredtostretchaspringis$F=kx$.Theworkdone$W$instretchingthespringfrom0toanextension$x$iscalculatedbyintegratingtheforcewithrespecttotheextension.Since$W=\int_{0}^{x}Fdx$and$F=kx$,wehave$W=\int_{0}^{x}kxdx=\frac{1}{2}kx^{2}$.So,theelasticpotentialenergystoredinastretchedspringis$E_p=\frac{1}{2}kx^{2}$.Forexample,ifaspringhasaspringconstant$k=50\N/m$andisstretchedby0.2m,thentheelasticpotentialenergy$E_p=\frac{1}{2}\times(50\N/m)\times(0.2\m)^{2}=1\J$.
2.Relatetheenergystoredinadeformedmaterialtotheareaundertheforceextensiongraph
Theareaundertheforceextensiongraphforanelasticobjectrepresentstheworkdoneindeformingtheobject,whichisequaltotheelasticpotentialenergystoredintheobject.InthecaseofaspringobeyingHooke'sLaw,theforceextensiongraphisastraightlinepassingthroughtheorigin.Theareaofthetriangleunderthegraphfrom0toanextension$x$withaforce$F=kx$is$A=\frac{1}{2}\timesbase\timesheight=\frac{1}{2}\timesx\timesF$.Substituting$F=kx$,weget$A=\frac{1}{2}kx^{2}$,whichisthesameastheformulaforelasticpotentialenergy.
6.FractureandFatigue
1.Understandtheconceptoffracture
Fractureistheseparationofamaterialintotwoormorepieces.Therearetwomaintypesoffracture:brittlefractureandductilefracture.
Brittlefractureoccurssuddenlyandwithoutmuchplasticdeformation.Materialsthatarebrittle,suchasglassandsomeceramics,havealowabilitytodeformplastically.Whenabrittlematerialissubjectedtoastress,itwillbreakwhenthestressreachesitsfracturestrength.Forexample,whenaglassrodisbent,itwillsuddenlybreakwithoutsignificantpriordeformation.
Ductilefractureoccursaftersignificantplasticdeformation.Ductilematerials,suchasmetals,candeformplasticallybeforebreaking.Thematerialfirstnecks(localreductionincrosssectionalarea)andthenbreaks.Forexample,whenacopperwireispulled,itwillstretchandneckbeforefinallybreaking.
2.Explaintheconceptoffatigue
Fatigueistheweakeningofamaterialcausedbycyclicloading.Whenamaterialissubjectedtorepeatedstress,evenifthestressisbelowtheultimatetensilestrengthofthematerial,crackscaninitiateandgrowovertime,eventuallyleadingtofailure.Forexample,thewingsofanaircraftaresubjectedtocyclicstressesduringflight.Overmanyflights,fatiguecrackscandevelop,whichcanbeverydangerousifnotdetectedandrepaired.
7.CompositeMaterials
1.Definecompositematerials
Compositematerialsarematerialsmadefromtwoormoredifferentmaterialswithdistinctproperties,combinedtocreateamaterialwithimprovedproperties.Thedifferentmaterialsarecalledthematrixandthereinforcement.Forexample,infiberglass,theglassfibersarethereinforcement,andtheresinisthematrix.
2.Understandtheadvantagesofcompositematerials
Compositematerialsoftenhaveacombinationofhighstrengthandlowweight.Forexample,carbonfiberreinforcedcompositesareusedinaerospaceapplicationsbecausetheyaremuchlighterthanmetalslikesteelbutcanhavesimilarorevenhigherstrength.Theycanalsohaveimprovedcorrosionresistancecomparedtosometraditionalmaterials.Forexample,fiberglassisresistanttocorrosioninmanychemicalenvironments.
Compositematerialscanbedesignedtohavespecificpropertiesbyvaryingthetypeandamountofreinforcementandthematrix.Forexample,bychangingtheorientationofthecarbonfibersinacarbonfiberreinforcedcomposite,wecancontrolthedirectiondependentstrengthofthematerial.
8.Rheology
1.Understandtheconceptofviscosity
Viscosityisameasureofafluid'sresistancetoflow.Ahighlyviscousfluidflowsslowly,whilealowviscosityfluidflowseasily.Forexample,honeyhasahighviscosityandflowsslowly,whilewaterhasarelativelylowviscosityandflowsquickly.
Viscositycanbeaffectedbytemperature.Generally,theviscosityofliquidsdecreasesasthetemperatureincreases.Thisisbecauseasthetemperaturerises,thekineticenergyofthefluidmoleculesincreases,andtheycanmovemorefreely,reducingtheinternalfrictionwithinthefluid.Forgases,theviscosityincreaseswithincreasingtemperaturebecausethemoreenergeticgasmoleculescollidemorefrequently,increasingtheresistancetoflow.
2.DifferentiatebetweenNewtonianandnonNewtonianfluids
Newtonianfluidshaveaconstantviscosityregardlessoftheshearrate(therateatwhichthefluidisdeformed).Therelationshipbetweentheshearstress($\tau$)andtheshearrate($\dot{\gamma}$)islinear,andtheviscosity$\eta=\frac{\tau}{\dot{\gamma}}$isaconstant.WaterandmostsimpleliquidsareNewtonianfluids.
NonNewtonianfluidsdonothaveaconstantviscosity.Theirviscositycanchangedependingontheshearrate.TherearedifferenttypesofnonNewtonianfluids,suchasshearthinningfluids(e.g.,ketchup),wheretheviscositydecreasesastheshearrateincreases,andshearthickeningfluids(e.g.,cornstarchinwater),wheretheviscosityincreasesastheshearrateincreases.
Questions
1.Whatisthedensityofasubstancewithamassof300gandavolumeof150$cm^3$?
First,usethedensityformula$\rho=\frac{m}{V}$.Given$m=300\g$and$V=150\cm^3$,then$\rho=\frac{300\g}{150\cm^3}=2\g/cm^3$.Convertingto$kg/m^3$,weget$2\times1000\kg/m^3=2000\kg/m^3$.
2.Iftherelativedensityofaliquidis0.9,whatisitsdensity?
Sincerelativedensity$RD=\frac{\rho_{liquid}}{\rho_{water}}$and$\rho_{water}=1000\kg/m^3$,then$\rho_{liquid}=RD\times\rho_{water}=0.9\times1000\kg/m^3=900\kg/m^3$.
3.Aspringhasaspringconstantof15N/m.Whatforceisrequiredtostretchitby0.2m?
UsingHooke'sLaw$F=kx$,with$k=15\N/m$and$x=0.2\m$,weget$F=(15\N/m)\times(0.2\m)=3\N$.
4.Awireofcrosssectionalarea$2\times10^{7}\m^2$issubjectedtoaforceof40N.Whatisthestressonthewire?
Usingthestressformula$\sigma=\frac{F}{A}$,with$F=40\N$and$A=2\times10^{7}\m^2$,wehave$\sigma=\frac{40\N}{2\times10^{7}\m^2}=2\times10^8\Pa$.
5.Arodoforiginallength2misstretchedby0.001m.Whatisthestrain?
Usingthestrainformula$\epsilon=\frac{x}{L}$,with$x=0.001\m$and$L=2\m$,weget$\epsilon=\frac{0.001\m}{2\m}=0.0005$.
6.Ifthestressonamaterialis$1.5\times10^8\Pa$andthestrainis0.001,whatisYoung'sModulus?
Usingtheformula$E=\frac{\sigma}{\epsilon}$,with$\sigma=1.5\times10^8\Pa$and$\epsilon=0.001$,wehave$E=\frac{1.5\times10^8\Pa}{0.001}=1.5\times10^{11}\Pa$.
7.Aspringwithaspringconstantof25N/misstretchedby0.15m.Whatistheelasticpotentialenergystoredinthespring?
Usingtheformula$E_p=\frac{1}{2}kx^{2}$,with$k=25\N/m$and$x=0.15\m$,weget$E_p=\frac{1}{2}\times(25\N/m)\times(0.15\m)^{2}=\frac{1}{2}\times25\times0.0225\J=0.28125\J$.
8.Whatisthemaindifferencebetweenelasticandplasticdeformation?
Elasticdeformationisreversible;thematerialreturnstoitsoriginalshapewhenthedeformingforceisremoved.Plasticdeformationisirreversible;thematerialdoesnotreturntoitsoriginalshapeaftertheforceisremoved.
9.Whydoesthedensityofmostsubstancesdecreasewithincreasingtemperature?
Astemperatureincreases,thevolumeofthesubstanceusuallyexpandswhilethemassremainsconstant.Accordingtothedensityformula$\rho=\frac{m}{V}$,anincreasein$V$withconstant$m$leadstoadecreasein$\rho$.
10.Howdoestheviscosityofaliquidchangewithincreasingtemperature?
Generally,theviscosityofliquidsdecreasesasthetemperatureincreasesbecausethekineticenergyofthefluidmoleculesincreases,reducingtheinternalfrictionwithinthefluid.
11.Ablockofmaterialhasamassof450gandavolumeof300$cm^3$.Calculateitsdensityin$kg/m^3$.
First,findthedensityin$g/cm^3$:$\rho=\frac{m}{V}=\frac{450\g}{300\cm^3}=1.5\g/cm^3$.Thenconvertto$kg/m^3$:$1.5\times1000\kg/m^3=1500\kg/m^3$.
12.Aspringhasaspringconstantof30N/m.Howmuchforceisneededtostretchitby0.25m?
UsingHooke'sLaw$F=kx$,with$k=30\N/m$and$x=0.25\m$,weget$F=(30\N/m)\times(0.25\m)=7.5\N$.
13.Awirehasacrosssectionalareaof$3\times10^{7}\m^2$andaforceof60Nisappliedtoit.Calculatethestress.
Usingthestressformula$\sigma=\frac{F}{A}$,with$F=60\N$and$A=3\times10^{7}\m^2$,wehave$\sigma=\frac{60\N}{3\times10^{7}\m^2}=2\times10^8\Pa$.
14.Abaroflength1.5misstretchedby0.00075m.Calculatethestrain.
Usingthestrainformula$\epsilon=\frac{x}{L}$,with$x=0.00075\m$and$L=1.5\m$,weget$\epsilon=\frac{0.00075\m}{1.5\m}=0.0005$.
15.Ifthestressonamaterialis$2\times10^8\Pa$andYoung'sModulusis$1\times10^{11}\Pa$,whatisthestrain?
Usingtheformula$E=\frac{\sigma}{\epsilon}$,wecanrearrangeitto$\epsilon=\frac{\sigma}{E}$.Substituting$\sigma=2\times10^8\Pa$and$E=1\times10^{11}\Pa$,weget$\epsilon=\frac{2\times10^8\Pa}{1\times10^{11}\Pa}=0.002$.
16.Aspringwithaspringconstantof40N/misstretchedby0.2m.Calculatetheelasticpotentialenergy.
Usingtheformula$E_p=\frac{1}{2}kx^{2}$,with$k=40\N/m$and$x=0.2\m$,weget$E_p=\frac{1}{2}\times(40\N/m)\times(0.2\m)^{2}=\frac{1}{2}\times40\times0.04\J=0.8\J$.
17.Explainwhyamaterialmayundergoplasticdeformation.
Whentheforceappliedtoamaterialexceedsitselasticlimit,theinternalstructureofthematerialispermanentlyaltered.Bondsbetweenatomsormoleculesarebrokenandreformedinnewpositions,resultinginplasticdeformation.
18.WhatisthesignificanceofYoung'sModulus?
Young'sModulusisameasureofthestiffnessofamaterial.AlargeYoung'sModulusmeansthematerialisstifferandrequiresalargestresstoproduceasmallstrain.
19.Howcanwedeterminethespringconstantfromaforceextensiongraph?
Thespringconstantisequaltotheslopeofthestraightlineportionoftheforceextensiongraph.Theslopeiscalculatedas$k=\frac{\DeltaF}{\Deltax}$.
20.Whydoesthedensityofwaterincreasefrom0°Cto4°C?
Inthetemperaturerangefrom0°Cto4°C,thewatermoleculesstarttoformamoreorderedstructure.Thehydrogenbondingbetweenwatermoleculescausesthewatertocontractslightly,resultinginadecreaseinvolume.Sincemassisconstant,accordingto$\rho=\frac{m}{V}$,thedensityincreases.
21.Aliquidhasadensityof850$kg/m^3$.Whatisitsrelativedensity?
Usingtheformulaforrelativedensity$RD=\frac{\rho_{liquid}}{\rho_{water}}$,with$\rho_{liquid}=850\kg/m^3$and$\rho_{water}=1000\kg/m^3$,weget$RD=\frac{850\kg/m^3}{1000\kg/m^3}=0.85$.
22.Aspringisstretchedbyaforceof12Nandtheextensionis0.1m.Whatisthespringconstant?
UsingHooke'sLaw$F=kx$,wecanrearrangeitto$k=\frac{F}{x}$.Substituting$F=12\N$and$x=0.1\m$,weget$k=\frac{12\N}{0.1\m}=120\N/m$.
23.Awireofcrosssectionalarea$4\times10^{7}\m^2$isunderastressof$1.5\times10^8\Pa$.Whatistheforceapplied?
Usingthestressformula$\sigma=\frac{F}{A}$,wecanrearrangeitto$F=\sigmaA$.Substituting$\sigma=1.5\times10^8\Pa$and$A=4\times10^{7}\m^2$,weget$F=(1.5\times10^8\Pa)\times(4\times10^{7}\m^2)=60\N$.
24.Arodoflength3misstretchedtoanewlengthof3.003m.Whatisthestrain?
Theextension$x=3.003\m3\m=0.003\m$.Usingthestrainformula$\epsilon=\frac{x}{L}$,with$L=3\m$and$x=0.003\m$,weget$\epsilon=\frac{0.003\m}{3\m}=0.001$.
25.IfamaterialhasaYoung'sModulusof$1.8\times10^{11}\Pa$andastrainof0.0015,whatisthestress?
Usingtheformula$E=\frac{\sigma}{\epsilon}$,wecanrearrangeitto$\sigma=E\epsilon$.Substituting$E=1.8\times10^{11}\Pa$and$\epsilon=0.0015$,weget$\sigma=(1.8\times10^{11}\Pa)\times(0.0015)=2.7\times10^8\Pa$.
26.Aspringwithaspringconstantof35N/miscompressedby0.12m.Whatistheelasticpotentialenergystored?
Usingtheformula$E_p=\frac{1}{2}kx^{2}$,with$k=35\N/m$and$x=0.12\m$,weget$E_p=\frac{1}{2}\times(35\N/m)\times(0.12\m)^{2}=\frac{1}{2}\times35\times0.0144\J=0.252\J$.
27.Whatarethetwomaintypesoffractureandhowdotheydiffer?
Thetwomaintypesarebrittlefractureandductilefracture.Brittlefractureoccurssuddenlywithoutmuchplasticdeformation.Ductilefractureoccursaftersignificantplasticdeformation,withthematerialneckingbeforebreaking.
28.Whydocompositematerialsoftenhavehighstrengthtoweightratios?
Compositematerialscombineastrongreinforcement(suchasfibers)withalightweightmatrix.Thereinforcementprovideshighstrength,whilethematrixholdsthereinforcementinplaceanddistributestheload.Thiscombinationallowsthematerialtohavehighstrengthwhilekeepingtheweightrelativelylow.
29.Howdoestheviscosityofagaschangewithincreasingtemperature?
Theviscosityofagasincreaseswithincreasingtemperature.Asthetemperaturerises,thegasmoleculeshavemorekineticenergyandcollidemorefrequently,increasingtheresistancetoflow.
30.DifferentiatebetweenNewtonianandnonNewtonianfluidsintermsofviscosity.
Newtonianfluidshaveaconstantviscosityregardlessoftheshearrate.NonNewtonianfluidshaveaviscositythatchangesdependingontheshearrate.
31.Acubeofmaterialhasasidelengthof5cmandamassof300g.Calculateitsdensity.
Thevolumeofthecube$V=(5\cm)^3=125\cm^3$.Thedensity$\rho=\frac{m}{V}=\frac{300\g}{125\cm^3}=2.4\g/cm^3$.Convertingto$kg/m^3$,weget$2.4\times1000\kg/m^3=2400\kg/m^3$.
32.Aspringisstretchedfromaninitiallengthof10cmtoafinallengthof12cmbyaforceof8N.Whatisthespringconstant?
Theextension$x=(1210)\cm=2\cm=0.02\m$.UsingHooke'sLaw$F=kx$,wecanrearrangeitto$k=\frac{F}{x}$.Substituting$F=8\N$and$x=0.02\m$,weget$k=\frac{8\N}{0.02\m}=400\N/m$.
33.Awirehasastressof$1.2\times10^8\Pa$andacrosssectionalareaof$3\times10^{7}\m^2$.Whatistheforceapplied?
Usingthestressformula$\sigma=\frac{F}{A}$,wecanrearrangeitto$F=\sigmaA$.Substituting$\sigma=1.2\times10^8\Pa$and$A=3\times10^{7}\m^2$,weget$F=(1.2\times10^8\Pa)\times(3\times10^{7}\m^2)=36\N$.
34.Arodoforiginallength2.5misstretchedby0.00125m.Whatisthestrain?
Usingthestrainformula$\epsilon=\frac{x}{L}$,with$x=0.00125\m$and$L=2.5\m$,weget$\epsilon=\frac{0.00125\m}{2.5\m}=0.0005$.
35.IfamaterialhasaYoung'sModulusof$2\times10^{11}\Pa$andastressof$3\times10^8\Pa$,whatisthestrain?
Usingtheformula$E=\frac{\sigma}{\epsilon}$,wecanrearrangeitto$\epsilon=\frac{\sigma}{E}$.Substituting$\sigma=3\times10^8\Pa$and$E=2\times10^{11}\Pa$,weget$\epsilon=\frac{3\times10^8\Pa}{2\times10^{11}\Pa}=0.0015$.
36.Aspringwithaspringconstantof50N/misstretchedby0.18m.Whatistheelasticpotentialenergystored?
Usingtheformula$E_p=\frac{1}{2}kx^{2}$,with$k=50\N/m$and$x=0.18\m$,weget$E_p=\frac{1}{2}\times(50\N/m)\times(0.18\m)^{2}=\frac{1}{2}\times50\times0.0324\J=0.81\J$.
37.Explaintheconceptoffatigueinmaterials.
Fatigueistheweakeningofamaterialcausedbycyclicloading.Repeatedstress,evenifbelowtheultimatetensilestrength,cancausecrackstoinitiateandgrowovertime,eventuallyleadingtofailure.
38.Whatarethecomponentsofacompositematerialandtheirroles?
Thecomponentsarethematrixandthereinforcement.Thereinforcementprovidesstrengthandstiffnesstothecomposite.Thematrixholdsthereinforcementinplace,transferstheloadbetweenthereinforcementelements,andprotectsthereinforcementfromdamage.
39.Whyisitimportanttounderstandtheviscosityoffluidsinengineeringapplications?
Understandingviscosityisimportantinmanyengineeringapplications.Forexample,influidflowsystems(suchaspipelines),viscosityaffectsthepressuredropandthepumpingpowerrequired.Inlubrication,theviscosityofthelubricantdeterminesitsabilitytoreducefrictionbetweenmovingparts.
40.Aliquidhasarelativedensityof0.95.Whatisitsdensityin$kg/m^3$?
Usingtheformulaforrelativedensity$RD=\frac{\rho_{liquid}}{\rho_{water}}$,wecanrearrangeitto$\rho_{liquid}=RD\times\rho_{water}$.Substituting$RD=0.95$and$\rho_{water}=1000\kg/m^3$,weget$\rho_{liquid}=0.95\times1000\kg/m^3=950\kg/m^3$.
41.Aspringisstretchedbyaforceof15Nandthespringconstantis75N/m.Whatistheextension?
UsingHooke'sLaw$F=kx$,wecanrearrangeitto$x=\frac{F}{k}$.Substituting$F=15\N$and$k=75\N/m$,weget$x=\frac{15\N}{75\N/m}=0.2\m$.
42.Awirehasacrosssectionalareaof$2.5\times10^{7}\m^2$andisunderaforceof50N.Whatisthestres
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025 九年級(jí)語(yǔ)文下冊(cè)詩(shī)歌意境畫(huà)面描繪課件
- 2025兩江新區(qū)小學(xué)招聘語(yǔ)文教師2人備考核心試題附答案解析
- 中國(guó)社會(huì)科學(xué)院世界經(jīng)濟(jì)與政治研究所2026年度公開(kāi)招聘第一批專業(yè)技術(shù)人員6人備考題庫(kù)完整答案詳解
- 2025湖南省招標(biāo)有限責(zé)任公司廣州分公司主要負(fù)責(zé)人社會(huì)化招聘1人考試重點(diǎn)題庫(kù)及答案解析
- 2025四川成都市第三人民醫(yī)院招聘考試核心題庫(kù)及答案解析
- 2025陜西西安市經(jīng)開(kāi)第三學(xué)校教師招聘考試核心試題及答案解析
- 2025年公開(kāi)招聘合同制門(mén)診收費(fèi)工作人員備考題庫(kù)及參考答案詳解1套
- 2025廣西桂海林漿紙有限公司公開(kāi)招聘1人(第三批)考試核心題庫(kù)及答案解析
- 2025年佛山市順德區(qū)樂(lè)從第一實(shí)驗(yàn)學(xué)校編制教師招聘16人備考題庫(kù)及答案詳解1套
- 關(guān)于普陀區(qū)教育系統(tǒng)2026年公開(kāi)招聘教師的備考題庫(kù)及答案詳解參考
- 2025年10月自考00319行政組織理論試題及答案含評(píng)分參考
- 硬化混凝土地面施工規(guī)范
- 焊接生產(chǎn)管理概述
- 車行投資車輛合同范本
- 培訓(xùn)課堂紀(jì)律要求
- 森林提質(zhì)改造課件
- 成都市第七中學(xué)2025-2026學(xué)年高二上學(xué)期11月考試語(yǔ)文試卷
- 近期工地安全事故案例
- 北京市海淀區(qū)2025-2026年高三語(yǔ)文上學(xué)期期中考試作文《說(shuō)“論辯”》3篇范文
- 廠中廠安全管理規(guī)定
- 2025年高中歷史上學(xué)期模擬試卷(含答案)
評(píng)論
0/150
提交評(píng)論