版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省文山市中考數學考試彩蛋押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、函數y=ax與y=ax2+a(a≠0)在同一直角坐標系中的大致圖象可能是()A. B.C. D.2、如圖是下列哪個立體圖形的主視圖()A. B.C. D.3、如圖,圓形螺帽的內接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm4、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數是()A.2個 B.3個 C.4個 D.5個5、在同一直角坐標系中,一次函數y=﹣kx+1與二次函數y=x2+k的大致圖象可以是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、已知直角三角形的兩條邊長恰好是方程的兩個根,則此直角三角形斜邊長是(
)A. B. C.3 D.52、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構成的圖形記作C2,將C1和C2構成的圖形記作C3.關于圖形C3,給出的下列四個結論,正確的是(
)A.圖形C3恰好經過4個整點(橫、縱坐標均為整數的點)B.圖形C3上任意一點到原點的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π3、下列各組圖形中,由左邊變成右邊的圖形,分別進行了平移、旋轉、軸對稱、中心對稱等變換,其中進行了旋轉變換的是(
)組,進行軸對稱變換的是(
).A. B. C. D.4、關于x的一元二次方程(k-1)x2+4x+k-1=0有兩個相等的實數根,則k的值為(
)A.1 B.0 C.3 D.-35、等腰三角形三邊長分別為a,b,3,且a,b是關于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.18第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、點P為邊長為2的正方形ABCD內一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉60°得到線段MQ,連接AQ、PQ,則的最小值為______.2、為了落實“雙減”政策,朝陽區(qū)一些學校在課后服務時段開設了與冬奧會項目冰壺有關的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內滑行的路徑MN的長度為______cm.3、拋物線的圖象和軸有交點,則的取值范圍是______.4、若拋物線的圖像與軸有交點,那么的取值范圍是________.5、如圖,是等邊三角形,點D為BC邊上一點,,以點D為頂點作正方形DEFG,且,連接AE,AG.若將正方形DEFG繞點D旋轉一周,當AE取最小值時,AG的長為________.四、簡答題(2小題,每小題10分,共計20分)1、如圖,二次函數的圖象交軸于、兩點,交軸于點,點的坐標為,頂點的坐標為.求二次函數的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標;若不存在請說明理由.2、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點的縱坐標是-2,求此時m的值;(2)已知當m≠0時,無論m為其他何值,每一條拋物線都經過坐標系中的兩個定點,求出這兩個定點的坐標.五、解答題(4小題,每小題10分,共計40分)1、為幫助人民應對疫情,某藥廠下調藥品的價格某種藥品經過連續(xù)兩次降價后,由每盒元下調至元,已知每次下降的百分率相同.(1)求這種藥品每次降價的百分率是多少?(2)已知這種藥品的成本為元,若按此降價幅度再一次降價,藥廠是否虧本?2、如圖1,在中,,,點D為AB邊上一點.(1)若,則______;(2)如圖2,將線段CD繞著點C逆時針旋轉90°得到線段CE,連接AE,求證:;(3)如圖3,過點A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.3、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.4、如圖,已知線段,點A在線段上,且,點B為線段上的一個動點.以A為中心順時針旋轉點M,以B為中心逆時針旋轉點N,旋轉角分別為和.若旋轉后M、N兩點重合成一點C(即構成),設.(1)的周長為_______;(2)若,求x的值.-參考答案-一、單選題1、D【解析】【分析】先根據一次函數的性質確定a>0與a<0兩種情況分類討論拋物線的頂點位置即可得出結論.【詳解】解:函數y=ax與y=ax2+a(a≠0)A.函數y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當頂點坐標為(0,a),應交于y軸負半軸,而不是交y軸正半軸,故選項A不正確;
B.函數y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當頂點坐標為(0,a),應交于y軸負半軸,而不是在坐標原點上,故選項B不正確;
C.函數y=ax圖形可得a>0,則y=ax2+a(a≠0)開口方向向上正確,當頂點坐標為(0,a),應交于y軸正半軸,故選項C不正確;
D.函數y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向上正確,當頂點坐標為(0,a),應交于y軸正半軸正確,故選項D正確;
故選D.【考點】本題考查的知識點是一次函數的圖象與二次函數的圖象,理解掌握函數圖象的性質是解此題的關鍵.2、B【分析】根據主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點睛】本題主要考查由三視圖判斷幾何體,解題的關鍵是掌握由三視圖想象幾何體的形狀,首先,應分別根據主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,然后綜合起來考慮整體形狀.3、D【分析】根據圓內接正六邊形的性質可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內接正六邊形的性質可得△AOB是正三角形,過作于設半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉化為直角三角形的問題是解決問題的關鍵.4、A【分析】根據軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.5、A【解析】【分析】二次函數圖象與y軸交點的位置可確定k的正負,再利用一次函數圖象與系數的關系可找出一次函數y=-kx+1經過的象限,對比后即可得出結論.【詳解】解:由y=x2+k可知拋物線的開口向上,故B不合題意;∵二次函數y=x2+k與y軸交于負半軸,則k<0,∴﹣k>0,∴一次函數y=﹣kx+1的圖象經過經過第一、二、三象限,A選項符合題意,C、D不符合題意;故選:A.【考點】本題考查了二次函數的圖象、一次函數圖象以及一次函數圖象與系數的關系,根據二次函數的圖象找出每個選項中k的正負是解題的關鍵.二、多選題1、AC【解析】【分析】先解出一元二次方程,再根據勾股定理計算即可;【詳解】,,∴或,當2、3是直角邊時,斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點】本題主要考查了一元二次方程的求解、勾股定理,準確計算是解題的關鍵.2、ABD【解析】【分析】畫出圖象C3,以及以O為圓心,以1為半徑的圓,再作出⊙O內接正方形,根據圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個整點,故正確;B.由圖象可知,圖形C3上任意一點到原點的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點】本題考查了二次函數的圖象與幾何變換,數形結合是解題的關鍵.3、AC【解析】【分析】旋轉是一個圖形繞著一個定點旋轉一定的角度,各對應點之間的位置關系也保持不變;在平面內,如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.據此即可解答.【詳解】由旋轉是一個圖形繞著一個定點旋轉一定的角度,各對應點之間的位置關系也保持不變,分析可得,進行旋轉變換的是A;左邊圖形能軸對稱變換得到右邊圖形,則進行軸對稱變換的是C;根據平移是將一個圖形從一個位置變換到另一個位置,各對應點間的連線平行,分析可得,D是平移變化;故答案為:A;C.【考點】本題考查了幾何變換的定義,注意結合幾何變換的定義,分析圖形的位置的關系,特別是對應點之間的關系.4、C【解析】【分析】由方程有兩個相等的實數根,根據根的判別式可得到關于k的方程,則可求得k的值.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個相等的實數根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.5、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關系確定此種情況存在,再利用根與系數的關系即可求得的值;當3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數的關系即可求得的值.【詳解】解:當3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點】本題考查了一元二次方程根與系數的關系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關鍵.三、填空題1、【分析】如圖,取的中點,連接,,,證明,進而證明在上運動,且垂直平分,根據,求得最值,根據正方形的性質和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質等邊三角形的性質,旋轉的性質,全等三角形的性質與判定,勾股定理,垂直平分線的性質與判定,根據以上知識轉化線段是解題的關鍵.2、【分析】如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據切線的性質定理和垂徑定理求解即可.【詳解】解:如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質定理、垂徑定理、勾股定理,熟練掌握切線的性質和垂徑定理是解答的關鍵.3、且【解析】【分析】由題意知,,計算求解即可.【詳解】解:由題意知,解得故答案為:且.【考點】本題考查了二次函數與軸的交點個數.解題的關鍵在于熟練掌握二次函數與軸的交點個數.4、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數根∴∴.故答案是:【考點】本題考查了二次函數與軸的交點情況與一元二次方程分的情況的關系、解一元一次不等式,能由已知條件列出關于的不等式是解題的關鍵.5、8【解析】【分析】過點A作于M,由已知得出,得出,由等邊三角形的性質得出,,得出,在中,由勾股定理得出,當正方形DEFG繞點D旋轉到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【詳解】過點A作于M,∵,∴,∴,∵是等邊三角形,∴,∵,∴,∴,在中,,當正方形DEFG繞點D旋轉到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,,∴在中,;故答案為8.【考點】本題考查了旋轉的性質、正方形的性質、等邊三角形的性質、勾股定理以及最小值問題;熟練掌握正方形的性質和等邊三角形的性質是解題的關鍵.四、簡答題1、;有最大值;存在滿足條件的點,其坐標為或【解析】【分析】可設拋物線解析式為頂點式,由點坐標可求得拋物線的解析式,則可求得點坐標,利用待定系數法可求得直線解析式;設出點坐標,從而可表示出的長度,利用二次函數的性質可求得其最大值;過作軸,交于點,過和于,可設出點坐標,表示出的長度,由條件可證得為等腰直角三角形,則可得到關于點坐標的方程,可求得點坐標.【詳解】解:拋物線的頂點的坐標為,可設拋物線解析式為,點在該拋物線的圖象上,,解得,拋物線解析式為,即,點在軸上,令可得,點坐標為,可設直線解析式為,把點坐標代入可得,解得,直線解析式為;設點橫坐標為,則,,,當時,有最大值;如圖,過作軸交于點,交軸于點,作于,設,則,,是等腰直角三角形,,,當中邊上的高為時,即,,,當時,,方程無實數根,當時,解得或,或,綜上可知存在滿足條件的點,其坐標為或.【考點】本題為二次函數的綜合應用,涉及待定系數法、二次函數的性質、等腰直角三角形的性質及方程思想等知識.在中主要是待定系數法的考查,注意拋物線頂點式的應用,在中用點坐標表示出的長是解題的關鍵,在中構造等腰直角三角形求得的長是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.2、(1)-1;(2)(0,-3)與(2,-3).【解析】【分析】(1)根據拋物線的頂點的縱坐標是?2,可以求得m的值;(2)根據當m≠0時,無論m為其他何值,每一條拋物線都經過坐標系中的兩個定點,可以求得這兩個定點的坐標.【詳解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線的頂點的縱坐標是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵當m≠0時,無論m為其他何值,每一條拋物線都經過坐標系中的兩個定點,當m=1時,y=x2-2x-3;當m=2時,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴這兩個定點為(0,-3)與(2,-3).【考點】本題考查二次函數的性質、二次函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用數形結合的思想和二次函數的性質解答.五、解答題1、(1);(2)不虧本,見解析【解析】【分析】(1)設這種藥品每次降價的百分率是,根據該藥品的原價及經過兩次降價后的價格,即可得出關于的一元二次方程,求解即可得出結論;(2)根據經過連續(xù)三次降價后的價格=經過連續(xù)兩次降價后的價格×(1-20%),即可求出再次降價后的價格,將其與100元進行比較后即可得出結論.【詳解】(1)解:設每次下降的百分率為,依題意,得:,解得:(不合題意,舍去).答:這種藥品每次降價的百分率是20%;(2)128×(1-20%)=102.4,∵102.4>100,∴按此降價幅度再一次降價,藥廠不會虧本.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.2、(1)5(2)證明見解析(3)【分析】(1)過C作CM⊥AB于M,根據等腰三角形的性質求出CM和DM,再根據勾股定理計算即可;(2)連BE,先證明,即可得到直角三角形ABE,利用勾股定理證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職雜技與魔術設計(雜技設計)試題及答案
- 2026年運營管理手冊(運營管理指南編寫)試題及答案
- 2026年安防設備安裝(監(jiān)控安裝)試題及答案
- 2025年大學幼兒發(fā)展與健康管理(幼兒健康學)試題及答案
- 智慧城市能力提升項目建設方案匯報
- 一部跨越海峽的文化時光膠囊:《高郵及基隆王氏祖譜》的價值與敘事
- 上海市崇明區(qū)2026屆初三一模英語試題(含答案)
- 2025廣東江門市中心醫(yī)院江海分院(江門市江海區(qū)人民醫(yī)院)誠聘工作人員1人備考題庫及答案詳解參考
- 湖北省襄陽市襄州區(qū)2025-2026 學年九年級上學期三校聯考化學試題含答案
- 福建省泉州市永春縣第一中學2025-2026學年高二年上學期12月月考物理試題
- 雨課堂學堂在線學堂云《中國電影經典影片鑒賞(北京師范大學)》單元測試考核答案
- 四川水利安全b證考試試題及答案
- 2626《藥事管理與法規(guī)》國家開放大學期末考試題庫
- 2025江西江新造船有限公司招聘70人模擬筆試試題及答案解析
- 重慶市豐都縣2025屆九年級上學期1月期末考試英語試卷(不含聽力原文及音頻答案不全)
- 2026年黨支部主題黨日活動方案
- 供銷合同示范文本
- 《分布式光伏發(fā)電開發(fā)建設管理辦法》問答(2025年版)
- 國家金融監(jiān)督管理總局真題面試題及答案
- 大型商場顧客滿意度調查報告
- 《國家基層高血壓防治管理指南2025版》解讀 2
評論
0/150
提交評論