版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省什邡市中考數(shù)學通關考試題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、小張同學去展覽館看展覽,該展覽館有A、B兩個驗票口(可進可出),另外還有C、D兩個出口(只出不進).則小張從不同的出入口進出的概率是()A. B. C. D.2、如圖是一個含有3個正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個圓形的金屬框上,使A,G,H三點剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.3、一個不透明的盒子里裝有a個除顏色外完全相同的球,其中有6個白球,每次將球充分攪勻后,任意摸出1個球記下顏色然后再放回盒子里,通過如此大量重復試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.184、如圖,點P是等邊三角形ABC內(nèi)一點,且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°5、下列事件中,是必然事件的是()A.剛到車站,恰好有車進站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學教材,恰好是概率初步的內(nèi)容D.任意畫一個三角形,其外角和是360°二、多選題(5小題,每小題3分,共計15分)1、下列說法正確的是(
)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧2、下列四個說法中,不正確的是(
)A.一元二次方程有實數(shù)根B.一元二次方程有實數(shù)根C.一元二次方程有實數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實數(shù)根3、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(
)A. B.C. D.4、如圖,的內(nèi)切圓(圓心為點O)與各邊分別相切于點D,E,F(xiàn),連接.以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線.下列說法正確的是(
)A.射線一定過點O B.點O是三條中線的交點C.若是等邊三角形,則 D.點O不是三條邊的垂直平分線的交點5、若為圓內(nèi)接四邊形,則下列哪個選項可能成立(
)A. B.C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、在平面直角坐標系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.2、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.3、在一個布袋中,裝有除顏色外其它完全相同的2個紅球和2個白球,如果從中隨機摸出兩個球,那么摸到的兩個紅球的概率是________.4、有五張正面分別標有數(shù)字,,0,1,2的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數(shù)字記為,則為非負數(shù)的概率為________.5、如圖,在矩形中,,,F(xiàn)為中點,P是線段上一點,設,連結并將它繞點P順時針旋轉90°得到線段,連結、,則在點P從點B向點C的運動過程中,有下面四個結論:①當時,;②點E到邊的距離為m;③直線一定經(jīng)過點;④的最小值為.其中結論正確的是______.(填序號即可)四、簡答題(2小題,每小題10分,共計20分)1、如圖,Rt△ABO的頂點A是反比例函數(shù)的圖象與一次函數(shù)的圖象在第二象限的交點,AB⊥x軸于點B,且.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求一次函數(shù)與反比例函數(shù)圖象的兩個交點A,C的坐標.2、如圖,在的正三角形的網(wǎng)格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.五、解答題(4小題,每小題10分,共計40分)1、已知,P是直線AB上一動點(不與A,B重合),以P為直角頂點作等腰直角三角形PBD,點E是直線AD與△PBD的外接圓除點D以外的另一個交點,直線BE與直線PD相交于點F.(1)如圖,當點P在線段AB上運動時,若∠DBE=30°,PB=2,求DE的長;(2)當點P在射線AB上運動時,試探求線段AB,PB,PF之間的數(shù)量關系,并給出證明.2、(1)解方程:(2)我國古代數(shù)學專著《九章算術》中記載:“今有宛田,下周三十步,徑十六步,問為田幾何?”注釋:宛田是指扇形形狀的田,下周是指弧長,徑是指扇形所在圓的直徑.求這口宛田的面積.3、在平面直角坐標系xOy中,對于點P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點P是線段OQ的“潛力點”已知點O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點”是_____________;(2)若點P在直線y=x上,且為線段OQ的“潛力點”,求點P橫坐標的取值范圍;(3)直線y=2x+b與x軸交于點M,與y軸交于點N,當線段MN上存在線段OQ的“潛力點”時,直接寫出b的取值范圍4、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=0-參考答案-一、單選題1、D【分析】先畫樹狀圖得到所有的等可能性的結果數(shù),然后找到小張從不同的出入口進出的結果數(shù),最后根據(jù)概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結果數(shù),其中小張從不同的出入口進出的結果數(shù)有6種,∴P小張從不同的出入口進出的結果數(shù),故選D.【點睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.2、A【分析】如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結合正方形的性質(zhì)可得:再設利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結合正方形的性質(zhì)可得:四邊形為正方形,則設而AB=2,CD=3,EF=5,結合正方形的性質(zhì)可得:而又而解得:故選A【點睛】本題考查的是正方形的性質(zhì),三角形外接圓圓心的確定,圓的基本性質(zhì),勾股定理的應用,二次根式的化簡,確定過A,G,H三點的圓的圓心是解本題的關鍵.3、C【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗,a=15是原方程的解故選:C.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據(jù)白球的頻率得到相應的等量關系.4、D【分析】將繞點逆時針旋轉得,根據(jù)旋轉的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點逆時針旋轉得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點睛】本題考查了旋轉的性質(zhì)、等邊三角形,解題的關鍵是掌握旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.5、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據(jù)隨機事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件”判斷選項A、C是隨機事件,即可得.【詳解】解:A、剛到車站,恰好有車進站是隨機事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學教材,恰好是概率初步的內(nèi)容是隨機事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點睛】本題考查了必然事件,解題的關鍵是熟記必然事件的概念,不可能事件的概念和隨機事件的概念.二、多選題1、ABD【解析】【分析】根據(jù)圓的相關知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學生對圓的基本概念和垂徑定理的理解,屬于基礎題.2、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程有實數(shù)根,正確,不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的情況與判別式△的關系:解題的關鍵是掌握(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.3、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.4、AC【解析】【分析】根據(jù)三角形內(nèi)切圓的性質(zhì)逐個判斷可得出答案.【詳解】A、以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線,由此可得BP是角平分線,所以射線一定過點O,說法正確,選項符合題意;B、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;C、當是等邊三角形時,可以證得D、F、E分別是邊的中點,根據(jù)中位線概念可得,選項符合題意;D、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;故選:AC.【考點】本題考查了三角形內(nèi)切圓的特點和性質(zhì),解題的關鍵是能與其它知識聯(lián)系起來,加以證明選項的正確.5、BD【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內(nèi)接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內(nèi)接四邊形的性質(zhì),注意:圓內(nèi)接四邊形的對角互補.三、填空題1、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.2、4【解析】【分析】由A、B坐標可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標,表示出b、c的值是解題的關鍵.3、【分析】畫樹狀圖,共有12個等可能的結果,摸到的兩個球顏色紅色的結果有2個,再由概率公式求解即可.【詳解】解:畫樹狀圖如圖:共有12個等可能的結果,摸到的兩個紅球的有2種結果,摸到的兩個紅球的概率是,故答案為:.【點睛】本題考查列表法或畫樹狀圖求概率,解題的關鍵是準確畫出樹狀圖或列出表格.4、【分析】求出為負數(shù)的事件個數(shù),進而得出為非負數(shù)的事件個數(shù),然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數(shù)字乘積為負數(shù)的事件為等8種可能的事件∴為非負數(shù)共有種∴為非負數(shù)的概率為故答案為:.【點睛】本題考查了列舉法求隨機事件的概率.解題的關鍵在于求出事件的個數(shù).5、②③④【分析】①當在點的右邊時,得出即可判斷;②證明出即可判斷;③根據(jù)為等腰直角三角形,得出都是等腰直角三角形,得到即可判斷;④當時,有最小值,計算即可.【詳解】解:,為等腰直角三角形,,當在點的左邊時,,當在點的右邊時,,故①錯誤;過點作,在和中,根據(jù)旋轉的性質(zhì)得:,,,,,故②正確;由①中得知為等腰直角三角形,,也是等腰直角三角形,過點,不管P在上怎么運動,得到都是等腰直角三角形,,即直線一定經(jīng)過點,故③正確;是等腰直角三角形,當時,有最小值,,為等腰直角三角形,,,由勾股定理:,,故④正確;故答案是:②③④.【點睛】本題是四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),旋轉的性質(zhì),勾股定理,等腰直角三角形,解題的關鍵是靈活運用這些性質(zhì)進行推理.四、簡答題1、(1),;(2)A(-1,6),C(6,-1).【解析】【分析】(1)先根據(jù)反比例函數(shù)的圖象所在的象限判斷出k的符號,在由△ABO的面積求出k的值,進而可得出兩個函數(shù)的解析式;(2)把兩函數(shù)的解析式組成方程組,求出x、y的值,即可得出A、C兩點的坐標.【詳解】(1)∵AB⊥x軸于點B,且,∴,∴.∵反比例函數(shù)圖象在第二、四象限,∴,∴,∴反比例函數(shù)的解析式為,一次函數(shù)的解析式為;(2)由,解得,或,∴A(-1,6),C(6,-1).【考點】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義及應用,反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)△ABO的面積求出k的值是解答此題的關鍵.2、(1)答案見解析;(2).【解析】【分析】(1)利用平行四邊形的性質(zhì)分別作出AB、AC的中點E、F,再利用三角形重心的性質(zhì)即可作出△ABC的BC邊上的中線AD;(2)利用平行線的性質(zhì)可得∠AEC=∠FDC,再利用菱形及等邊三角形的性質(zhì)可求得DH、CH的長,繼而求得CD的長,從而求得答案.【詳解】(1)如圖,線段AD就是所求作的中線;(2)如圖:在的正三角形的網(wǎng)格中,∵MN∥AB∥FD,∴∠AEC=∠FDC,∵四邊形CMGN為菱形,且邊長為5,∴CG⊥MN,∴CG⊥FD,,∴CG=2OG=5,∵△GFD為等邊三角形,且邊長為2,同理:HG=,∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,∴,即,∴,∴.【考點】本題考查了作圖-應用與設計作圖,菱形的性質(zhì)、等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理的應用.首先要理解題意,弄清問題中對所作圖形的要求,結合對應幾何圖形的性質(zhì)和基本作圖的方法作圖.五、解答題1、(1)(2)PF=AB-PB或PF=AB+PB,理由見解析【分析】(1)根據(jù)△PBD等腰直角三角形,PB=2,求出DB的長,由⊙O是△PBD的外接圓,∠DBE=30°,可得答案;(2)根據(jù)同弧所對的圓周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可證△APD≌△FPB,可得答案.【詳解】解:(1)由題意畫以下圖,連接EP,∵△PBD等腰直角三角形,⊙O是△PBD的外接圓,∴∠DPB=∠DEB=90°,∵PB=2,∴,∵∠DBE=30°,∴(2)①點P在點A、B之間,由(1)的圖根據(jù)同弧所對的圓周角相等,可得:∠ADP=∠FBP,又∵△PBD等腰直角三角形,∴∠DPB=∠APD=90°,DP=BP,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∵AP+PB=AB∴FP+PB=AB,∴FP=AB-PB,②點P在點B的右側,如下圖:∵△PBD等腰直角三角形,∴∠DPB=∠APF=90°,DP=BP,∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,∴∠PBF=∠PDA,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∴AB+PB=AP,∴AB+PB=PF,∴PF=AB+PB.綜上所述,F(xiàn)P=AB-PB或PF=AB+PB.【點睛】本題考查了圓的性質(zhì),等腰直角三角形,三角形全等的判定,做題的關鍵是注意(2)的兩種情況.2、(1),;(2)平方步【分析】(1)利用配方法,即可求解;(2)利用扇形的面積公式,即可求解.【詳解】解:(1),,配方,得,∴,∴,;(2)解:∵扇形的田,弧長30步,其所在圓的直徑是16步,∴這塊田的面積(平方步).【點睛】本題主要考查了解一元二次方程,求扇形的面積,熟練掌握一元二次方程的解法,扇形的面積等于乘以弧長再乘以扇形的半徑是解題的關鍵.3、(1);(2);(3)或【分析】(1)分別計算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點P在以O為圓心,1為半徑的圓外且點P在線段OQ垂直平分線的左側,結合PO≤2,點P在以O為圓心,2為半徑的圓上或圓內(nèi),可得點P在如圖所示的線段AB上(不包含點B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點P在以O為圓心,1為半徑的圓外且點P在以O為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側,再分兩種情況討論:當時,當時,分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以滿
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年鐵嶺衛(wèi)生職業(yè)學院高職單招職業(yè)適應性測試模擬試題及答案詳細解析
- 2026年浙江工商職業(yè)技術學院高職單招職業(yè)適應性測試模擬試題及答案詳細解析
- 2026年湖北工業(yè)職業(yè)技術學院單招綜合素質(zhì)筆試模擬試題含詳細答案解析
- 2026年晉城職業(yè)技術學院單招綜合素質(zhì)筆試模擬試題含詳細答案解析
- 2026年安慶醫(yī)藥高等??茖W校單招綜合素質(zhì)考試參考題庫含詳細答案解析
- 2026年民辦四川天一學院單招綜合素質(zhì)考試模擬試題含詳細答案解析
- 2026年河南檢察職業(yè)學院單招職業(yè)技能考試備考試題含詳細答案解析
- 2026年廣州城市職業(yè)學院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026上海市閔行區(qū)浦瑞幼兒園招聘考試重點題庫及答案解析
- 2026年臺州市第二人民醫(yī)院招聘編外工作人員4人考試重點題庫及答案解析
- GB/T 13320-2025鋼質(zhì)模鍛件金相組織評級圖及評定方法
- 深海資源勘探中的分布式感知系統(tǒng)布設與效能評估
- 化工生產(chǎn)安全用電課件
- 2026屆湖北省武漢市高三元月調(diào)考英語試卷(含答案無聽力原文及音頻)
- 110kV~750kV架空輸電線路施工及驗收規(guī)范
- (2025年)山東事業(yè)單位考試真題及答案
- 質(zhì)量檢驗部2025年度工作總結與2026年度規(guī)劃
- 民辦高中辦學方案
- 樹脂鏡片制作課件
- 企業(yè)對賬函模板11
- GB/T 20452-2021仁用杏杏仁質(zhì)量等級
評論
0/150
提交評論