版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《銳角三角函數(shù)》能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在Rt△ABC中,∠C=90°,sinA=,則cosA的值等于()A. B. C. D.2、如圖,在正方形中、是的中點,是上的一點,,則下列結(jié)論:(1);(2);(3);(4).其中結(jié)論正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個3、已知正三角形外接圓半徑為,這個正三角形的邊長是()A. B. C. D.4、如圖,琪琪一家駕車從地出發(fā),沿著北偏東的方向行駛,到達地后沿著南偏東的方向行駛來到地,且地恰好位于地正東方向上,則下列說法正確的是()A.地在地的北偏西方向上 B.地在地的南偏西方向上C. D.5、如圖,在邊長為2的正方形ABCD中,E,F(xiàn)分別為BC,CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q.下列結(jié)論錯誤的是()A.AE⊥BF B.QB=QFC.cos∠BQP= D.S四邊形ECFG=S△BGE第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題4分,共計20分)1、如圖,正六邊形的邊長為2,以為圓心,的長為半徑畫弧,得,連接,,則圖中陰影部分的面積為________.2、如圖,正方形ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后折痕DE分別交AB、AC于點E、G,連接GF,給出下列結(jié)論:①∠AGD=110.5;②2tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BF=OF;⑥S△OGF=1,則正方形ABCD的面積是12+8,其中正確的是_____.(只填寫序號)3、如圖,大壩的橫截面是一個梯形,壩頂寬,壩高,斜坡的坡度,斜坡的坡度,則坡底寬__________.4、如圖,矩形ABCD中,DE⊥AC于點E,∠ADE=α,cosα=,AB=4,AD長為_____.5、如圖,△ABC中,BD⊥AB,BD、AC相交于點D,AD=AC,AB=2,∠ABC=150°,則△DBC的面積是______.三、解答題(6小題,每小題10分,共計60分)1、圖1、圖2分別是某型號拉桿箱的實物圖與示意圖,小張獲得了如下信息:滑桿DE,箱長BC,拉桿AB的長度都相等,B,F(xiàn)在AC上,C在DE上,支桿DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,請根據(jù)以上信息,解決下列問題.(1)求AC的長度:(2)直接寫出拉桿端點A到水平滑桿ED所在直線的距離cm.2、計算:.3、如圖,在一次軍事演習(xí)中,藍方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進實施攔截.紅方行駛1000米到達C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進了相同的距離,剛好在D處成功攔截藍方.求紅藍雙方最初相距多遠(結(jié)果不取近似值).4、已知直線m與⊙O,AB是⊙O的直徑,AD⊥m于點D.(1)如圖①,當(dāng)直線m與⊙O相交于點E、F時,求證:∠DAE=∠BAF.(2)如圖②,當(dāng)直線m與⊙O相切于點C時,若∠DAC=35°,求∠BAC的大??;(3)若PC=2,PB=2,求陰影部分的面積(結(jié)果保留π).5、小明想利用所學(xué)知識測量一公園門前熱氣球直徑的大小,如圖,當(dāng)熱氣球升到某一位置時,小明點A處測得熱氣球底部點C,中部點D的仰角分別為和,已知點O為熱氣球中心,,,點C在上,,且點在同一平面內(nèi),根據(jù)以上提供的倍息,求熱氣球的直徑約為多少米?(參考數(shù)據(jù):)(結(jié)果精確到)6、如圖,點A、B在以CD為直徑的⊙O上,且,∠BCD=30°.(1)判斷ABC的形狀,并說明理由;(2)若BC=cm,求圖中陰影部分的面積.-參考答案-一、單選題1、A【分析】由三角函數(shù)的定義可知sinA=,可設(shè)a=4,c=5,由勾股定理可求得b=3,再利用余弦的定義代入計算即可.【詳解】解:∵sinA=,∴可設(shè)a=4,c=5,由勾股定理可求得b=3,∴cosA=,故選:A.【點睛】本題主要考查三角函數(shù)的定義,掌握正弦、余弦函數(shù)的定義是解題的關(guān)鍵.2、B【分析】首先根據(jù)正方形的性質(zhì)與同角的余角相等證得:△BAE∽△CEF,則可證得②正確,①③錯誤,利用有兩邊對應(yīng)成比例且夾角相等三角形相似即可證得△ABE∽△AEF,即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴,∵BE=CE,∴BE2=AB?CF.∵AB=2CE,∴CF=CE=CD,∴CD=4CF,故②正確,③錯誤,∴tan∠BAE=BE:AB=,∴∠BAE≠30°,故①錯誤;設(shè)CF=a,則BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=2a,EF=a,AF=5a,∴,.∴,∵∠ABE=∠AEF=90°,∴△ABE∽△AEF,故④正確.故選:B.【點睛】此題考查了相似三角形的判定與性質(zhì),直角三角形的性質(zhì)以及正方形的性質(zhì).熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.3、B【分析】如圖,為正三角形ABC的外接圓,過點O作OD⊥AB于點D,連接OA,再由等邊三角形的性質(zhì),可得∠OAB=30°,,然后根據(jù)銳角三角函數(shù),即可求解.【詳解】解:如圖,為正三角形ABC的外接圓,過點O作OD⊥AB于點D,連接OA,根據(jù)題意得:OA=,∠OAB=30°,,在中,,∴AB=3,即這個正三角形的邊長是3.故選:B【點睛】本題主要考查了銳角三角函數(shù),三角形的外接圓,熟練掌握銳角三角函數(shù),三角形的外接圓性質(zhì)是解題的關(guān)鍵.4、B【分析】根據(jù)題意可知,,由此即可得到即可判斷A;由可以判斷B;由可以判斷C;求出即可判斷D.【詳解】解:如圖所示:由題意可知,,,,即在處的北偏西,故A不符合題意;,地在地的南偏西方向上,故B不符合題意;,故C錯誤.,,,故D不符合題意.故選B.【點睛】本題考查的是解直角三角形和方向角問題,熟練掌握方向角的概念是解題的關(guān)鍵.5、C【分析】△BCF沿BF對折,得到△BPF,利用角的關(guān)系求出QF=QB,即可判斷B;首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到AE⊥BF即可判斷A;利用QF=QB,解出BP,QB,根據(jù)正弦的定義即可求解即可判斷C;可證△BGE與△BCF相似,進一步得到相似比,再根據(jù)相似三角形的性質(zhì)即可求解即可判斷D.【詳解】解:∵四邊形ABCD是正方形,∴∠C=90°,AB∥CD,由折疊的性質(zhì)得:FP=FC,∠PFB=∠BFC,∠FPB=∠C=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故B選項不符合題意;②∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CD=BC,,,∠ABE=∠C=90°,∴CF=BE,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故A選項不符合題意;令PF=k(k>0),則PB=2k,在Rt△BPQ中,設(shè)QB=x,∵,∴x2=(x﹣k)2+4k2,∴x=,∴cos∠BQP=,故C選項符合題意;⑤∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面積:△BCF的面積=1:5,∴S四邊形ECFG=4S△BGE,故D選項不符合題意.故選C.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,相似三角形的性質(zhì)與判定,勾股定理,解直角三角形,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.二、填空題1、【解析】【分析】由正六邊形ABCDEF的邊長為2,可得AB=BC=2,∠ABC=∠BAF=120°,進而求出∠BAC=30°,∠CAE=60°,過B作BH⊥AC于H,由等腰三角形的性質(zhì)和含30°直角三角形的性質(zhì)得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=,得到AC=2,根據(jù)扇形的面積公式即可得到陰影部分的面積【詳解】解:∵正六邊形ABCDEF的邊長為2,=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=(180°-∠ABC)=×(180°-120°)=30°,過B作BH⊥AC于H,∴AH=CH,BH=AB=×2=1,在Rt△ABH中,AH==,∴AC=2,同理可證,∠EAF=30°,∴∠CAE=∠BAF-∠BAC-∠EAF=120°-30°-30°=60°,∴∴圖中陰影部分的面積為2π,故答案為:.【點睛】本題考查的是正六邊形的性質(zhì)和扇形面積的計算、等腰三角形的性質(zhì)、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.2、④⑤⑥【解析】【分析】①由四邊形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折疊的性質(zhì),可求得∠ADG的度數(shù),從而求得∠AGD;②利用∠GAD與∠ADG度數(shù)求得∠AED度數(shù)可得;③證△AEG≌△FEG得AG=FG,由FG>OG即可得;④由折疊的性質(zhì)與平行線的性質(zhì),易得△AEG是等腰三角形,由AE=FE、AG=FG即可得證;⑤設(shè)OF=a,先求得∠EFG=45°,從而知BF=EF=GF=OF;⑥由S△OGF=1求出GF的長,進而可得出BE及AE的長,利用正方形的面積公式可得出結(jié)論.【詳解】解:∵四邊形ABCD是正方形,∴∠GAD=∠ADO=45°,由折疊的性質(zhì)可得:∠ADG=∠ADO=22.5°,∴∠AGD=180°﹣∠GAD﹣∠ADG=112.5°,故①錯誤.∵∠AED=180°﹣∠EAD﹣∠ADE=67.5°,∴tan∠AED≠1,則2tan∠AED≠2,故②錯誤;由折疊的性質(zhì)可得:AE=EF,∠EFD=∠EAD=90°,在△AEG和△FEG中,∵,∴△AEG≌△FEG(SAS),∴AG=FG,在Rt△GOF中,∵AG=FG>GO,∴S△AGD>S△OGD,故③錯誤;∵∠AGE=∠GAD+∠ADG=67.5°=∠AED,∴AE=AG,又∵AE=FE、AG=FG,∴AE=EF=GF=AG,∴四邊形AEFG是菱形,故④正確;設(shè)OF=a,∵四邊形AEFG是菱形,且∠AED=67.5°,∴∠FEG=∠FGE=67.5°,∴∠EFG=45°,又∵∠EFO=90°,∴∠GFO=45°,∴GF=EF=a,∵∠EFO=90°,∠EBF=45°,∴BF=EF=GF=a,即BF=OF,故⑤正確;∵S△OGF=1,∴OG2=1,即a2=1,則a2=2,∵BF=EF=a,且∠BFE=90°,∴BE=2a,又∵AE=EF=a,∴AB=AE+BE=2a+a=(2+)a,則正方形ABCD的面積是(2+)2a2=(6+4)×2=12+8,故⑥正確;故答案為:④⑤⑥.【點睛】本題考查了正方形的性質(zhì)、折疊的性質(zhì)、等腰直角三角形的性質(zhì)以及菱形的判定與性質(zhì)等知識.此題綜合性較強,難度較大,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.3、60【解析】【分析】過點作于點,過點作于點,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)坡度的定義求出的長,然后根據(jù)線段的和差即可得.【詳解】解:如圖,過點作于點,過點作于點,則,四邊形是矩形,,斜坡的坡度,斜坡的坡度,,即,解得,則坡底寬,故答案為:60.【點睛】本題考查了解直角三角形的應(yīng)用(坡度)、矩形的判定與性質(zhì)等知識點,掌握理解坡度的定義(坡面的鉛直高度和水平寬度的比叫做坡度)是解題關(guān)鍵.4、【解析】【分析】將已知角度的三角函數(shù)轉(zhuǎn)換到所需要的三角形中,得到∠ADE=∠DCE=α,求出AC的值,再由勾股定理計算即可.【詳解】∵∠ADC=∠AED=90°,∠DAE+∠ADE=∠ADE+∠CDE=90°∴∠DAE=∠CDE又∵∠DCE+∠CDE=90°∴∠ADE=∠DCE=α∴cosα==又∵矩形ABCD中AB=CD=4∴AC=在中滿足勾股定理有故答案為:.【點睛】本題考查了已知余弦長求邊長,將已知余弦長轉(zhuǎn)換到所需要的三角形中是解題的關(guān)鍵.5、3314##3143【解析】【分析】過點作,交延長線于點,先根據(jù)相似三角形的判定證出,根據(jù)相似三角形的性質(zhì)可得,從而可得,再解直角三角形可得,從而可得,然后利用三角形的面積公式即可得.【詳解】解:如圖,過點作,交延長線于點,,,,,,,解得,又,,在中,,即,解得,,,解得,則的面積是,故答案為:.【點睛】本題考查了相似三角形的判定與性質(zhì)、解直角三角形等知識點,通過作輔助線,構(gòu)造相似三角形是解題關(guān)鍵.三、解答題1、(1)(40+40)cm;(2)(20)cm.【解析】【分析】(1)過點F作FG⊥DE于點G,分別利用三角函數(shù)求出FG和DG,然后求出CD,進而求出CE,即可求出DE,最后根據(jù)AC=2DE即可求出AC;(2)作AH⊥ED延長線于H,根據(jù)AH=AC·sin45°求出AH即可.【詳解】解:(1)過點F作FG⊥DE于點G,∴∠FGD=∠FGC=90°,在Rt△DGF中,∵∠CDF=30°,∴FG=FD?sin30°=30×=15(cm),∴DG=FD?cos30°=30×=15(cm),在Rt△CGF中,∵∠DCF=45°,∴CG=FG=15(cm),∴CD=CG+DG=15+15(cm),∵CE:CD=1:3,∴CE=CD=×(15+15)=5+5(cm),∴DE=EC+CD=5+5+15+15=20+20(cm),∵DE=BC=AB,∴AC=AB+BC=2DE=2×(20+20)=40+40(cm),即AC的長度為(40+40)cm.(2)作AH⊥ED延長線于H,在Rt△AHC中,∵∠ACH=45°,∴AH=AC?sin45°=(40+40)×=20+20(cm),故答案為:(20).【點睛】本題考查了解直角三角形應(yīng)用題,一般步驟為(1)弄清題中的名詞、術(shù)語的意義,如仰角、俯角、坡度、坡角等概念,然后根據(jù)題意畫出幾何圖形,建立數(shù)學(xué)模型(2)將實際問題中的數(shù)量關(guān)系歸結(jié)為解直角三角形的問題.當(dāng)有些圖形不是直角三角形時,可適當(dāng)添加輔助線,把它們分割成直角三角形或矩形.(3)尋找直角三角形,并解這個三角形.2、【解析】【分析】根據(jù)特殊三角函數(shù)值、零次冪、負指數(shù)冪及二次根式的運算可直接進行求解.【詳解】解:==.【點睛】本題主要考查特殊三角函數(shù)值、零次冪、負指數(shù)冪及二次根式的運算,熟練掌握特殊三角函數(shù)值、零次冪、負指數(shù)冪及二次根式的運算是解題的關(guān)鍵.3、紅藍雙方最初相距()米.【解析】【分析】過B作AB的垂線,過C作AB的平行線,兩線交于點E;過C作AB的垂線,過D作AB的平行線,兩線交于點F,則∠E=∠F=90°,紅藍雙方相距AB=DF+CE.在Rt△BCE中,根據(jù)銳角三角函數(shù)的定義求出CE的長,同理,求出DF的長,進而可得出結(jié)論.【詳解】解:過B作AB的垂線,過C作AB的平行線,兩線交于點E;過C作AB的垂線,過D作AB的平行線,兩線交于點F,則∠E=∠F=90°,紅藍雙方相距AB=DF+CE.在Rt△BCE中,∵BC=1000米,∠EBC=60°,∴CE=BC?sin60°=1000×=500米.在Rt△CDF中,∵∠F=90°,CD=1000米,∠DCF=45°,∴DF=CD?sin45°=1000×=500米,∴AB=DF+CE=(500+500)米.答:紅藍雙方最初相距()米.【點睛】本題考查了解直角三角形的應(yīng)用-方向角問題,銳角三角函數(shù)的定義,正確理解方向角的定義,進而作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.4、(1)見解析;(2);(3).【解析】【分析】(1)通過已知條件可知,,再通過同角的補交相等證得,即可得到答案;(2)利用,得,再通過OA=OC,得;(3)現(xiàn)在中,利用勾股定理求得半徑r=2,再通過,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025云南臨滄鎮(zhèn)康縣公安局招聘警務(wù)輔助人員5人參考題庫及答案1套
- 2025年喀什輔警協(xié)警招聘考試真題附答案
- 2025廣東清遠英德市公安局第六批招聘警務(wù)輔助人員57人參考題庫及答案1套
- 2025中國科學(xué)院遺傳與發(fā)育生物學(xué)研究所郁珍瑜研究組特別研究助理(博士后)招聘2人備考題庫有完整答案詳解
- 2025中共防城港市委員會政策研究室(改革辦、財經(jīng)辦)招聘1人備考題庫(廣西)及答案詳解(新)
- 2026河南漯河市自然資源和規(guī)劃局所屬事業(yè)單位招聘1人備考題庫及答案詳解(新)
- 2025-2030氣象大數(shù)據(jù)產(chǎn)業(yè)防災(zāi)減災(zāi)應(yīng)用與農(nóng)業(yè)生產(chǎn)決策系統(tǒng)開發(fā)
- 2025-2030武術(shù)健身行業(yè)市場供需平衡分析及發(fā)展投資建議規(guī)劃分析研究報告
- 2025-2030歐洲食品添加劑行業(yè)質(zhì)量管控要求現(xiàn)狀分析評估研究
- 2025-2030歐洲銀行服務(wù)行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2024年部門業(yè)務(wù)主管自查自糾問題總結(jié)及整改措施
- 烏魯木齊地區(qū)2024年高三年級第一次質(zhì)量監(jiān)測(一模)英語試卷(含答案)
- 六年級上冊必讀書目《童年》閱讀測試題(附答案)
- 不良事件的管理查房
- 大學(xué)生畢業(yè)論文寫作教程全套教學(xué)課件
- 雅思閱讀總述講解
- 王洪圖黃帝內(nèi)經(jīng)80課時講稿
- 地下室消防安全制度
- 新版FMEA(AIAG-VDA)完整版PPT可編輯FMEA課件
- YY/T 0833-2020肢體加壓理療設(shè)備通用技術(shù)要求
- GB/T 5023.7-2008額定電壓450/750 V及以下聚氯乙烯絕緣電纜第7部分:二芯或多芯屏蔽和非屏蔽軟電纜
評論
0/150
提交評論