福建省福鼎市中考數(shù)學測試卷【必考】附答案詳解_第1頁
福建省福鼎市中考數(shù)學測試卷【必考】附答案詳解_第2頁
福建省福鼎市中考數(shù)學測試卷【必考】附答案詳解_第3頁
福建省福鼎市中考數(shù)學測試卷【必考】附答案詳解_第4頁
福建省福鼎市中考數(shù)學測試卷【必考】附答案詳解_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

福建省福鼎市中考數(shù)學測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,G是正方形ABCD內(nèi)一點,以GC為邊長,作正方形GCEF,連接BG和DE,試用旋轉(zhuǎn)的思想說明線段BG與DE的關系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG2、已知關于x的一元二次方程標有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C.且 D.3、定義新運算,對于任意實數(shù)a,b滿足,其中等式右邊是通常的加法、減法、乘法運算,例如,若(k為實數(shù))是關于x的方程,則它的根的情況是(

)A.有一個實根 B.有兩個不相等的實數(shù)根 C.有兩個相等的實數(shù)根 D.沒有實數(shù)根4、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個5、如圖,點O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°二、多選題(5小題,每小題3分,共計15分)1、如圖在四邊形中,,,,為的中點,以點為圓心、長為半徑作圓,恰好使得點在圓上,連接,若,則下列說法中正確的是(

)A.是劣弧的中點 B.是圓的切線C. D.2、下列圖形中,是中心對稱圖形的是(

)A. B.C. D.3、觀察如圖推理過程,錯誤的是(

)A.因為的度數(shù)為,所以B.因為,所以C.因為垂直平分,所以D.因為,所以4、如圖,是的直徑,,是上的點,且,分別與,相交于點,,則下列結(jié)論一定成立的是(

)A. B. C.平分D. E.5、下列條件中,不能確定一個圓的是(

)A.圓心與半徑 B.直徑C.平面上的三個已知點 D.三角形的三個頂點第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),與y軸交于點C.下列結(jié)論:①abc>0;②3a﹣c=0;③當x<0時,y隨x的增大而增大;④對于任意實數(shù)m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號).2、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.3、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CD∥AB.AD與y軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于P,Q兩點,則線段PQ的長為_____.4、如圖,已知⊙O的半徑為2,弦AB的長度為2,點C是⊙O上一動點若△ABC為等腰三角形,則BC2為_______.5、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標號分別為1,2,3,綠色球兩顆,標號分別為1,2,若從五顆球中任取兩顆,則兩顆球的標號之和不小于4的概率為__.四、簡答題(2小題,每小題10分,共計20分)1、在平面直角坐標系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側(cè)).(1)求拋物線的頂點P的坐標(用含a的代數(shù)式表示);(2)橫、縱坐標都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當時,請直接寫出“W區(qū)域”內(nèi)的整點個數(shù);②當“W區(qū)域”內(nèi)恰有2個整點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.2、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.五、解答題(4小題,每小題10分,共計40分)1、如圖,以四邊形的對角線為直徑作圓,圓心為,點、在上,過點作的延長線于點,已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.2、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內(nèi),過A作軸于B,以為斜邊在其左側(cè)作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標.3、已知拋物線.(1)該拋物線的對稱軸為;(2)若該拋物線的頂點在x軸上,求拋物線的解析式;(3)設點M(m,),N(2,)在該拋物線上,若>,求m的取值范圍.4、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個單位的速度沿向右運動,當點E到達點C時停止運動,直接寫出在運動過程中與重疊部分面積S與運動時間t(單位:秒)的函數(shù)關系式;(2)點M為線段的中點,當(1)中的頂點E運動到點C后,將繞著點C繼續(xù)順時針旋轉(zhuǎn)得到,點P是直線上一動點,連接,求的最小值.-參考答案-一、單選題1、A【解析】【分析】根據(jù)四邊形ABCD為正方形,得出BC=DC,∠BCD=90°,根據(jù)四邊形CEFG為正方形,得出GC=EC,∠GCE=90°,再證∠BCG=∠DCE,△BCG與△DCE具有可旋轉(zhuǎn)的特征即可【詳解】解:∵四邊形ABCD為正方形,∴BC=DC,∠BCD=90°,∵四邊形CEFG為正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG繞點C順時針方向旋轉(zhuǎn)90°得到△DCE,∴BG=DE,故選項A.【考點】本題考查圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件,同角的余角性質(zhì),掌握圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件是解題關鍵.2、C【解析】【分析】由一元二次方程定義得出二次項系數(shù)k≠0;由方程有兩個不相等的實數(shù)根,得出“△>0”,解這兩個不等式即可得到k的取值范圍.【詳解】解:由題可得:,解得:且;故選:C.【考點】本題考查了一元二次方程的定義和根的判別式,涉及到了解不等式等內(nèi)容,解決本題的關鍵是能讀懂題意并牢記一元二次方程的概念和根的判別式的內(nèi)容,能正確求出不等式(組)的解集等,本題對學生的計算能力有一定的要求.3、B【解析】【分析】將按照題中的新運算方法展開,可得,所以可得,化簡得:,,可得,即可得出答案.【詳解】解:根據(jù)新運算法則可得:,則即為,整理得:,則,可得:,;,方程有兩個不相等的實數(shù)根;故答案選:B.【考點】本題考查新定義運算以及一元二次方程根的判別式.注意觀察題干中新定義運算的計算方法,不能出錯;在求一元二次方程根的判別式時,含有參數(shù)的一元二次方程要尤其注意各項系數(shù)的符號.4、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當時,,∴,∵,∴,把代入中得,所以②正確;③當時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)決定拋物線的開口方向和大?。敃r,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時,對稱軸在軸左;當與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.5、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.二、多選題1、ABC【解析】【分析】直接利用圓周角定理以及結(jié)合圓心角、弧、弦的關系、切線的判定方法、平行線的判定方法、四邊形內(nèi)角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項錯誤.故選擇ABC.【考點】此題主要考查了切線的判定以及圓周角與弧的關系、四邊形內(nèi)角和、平行線的判定方法等知識,正確掌握相關判定方法是解題關鍵.2、BD【解析】【分析】根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,進而判斷得出答案.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不符合題意;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不合題意;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意.故選:BD.【考點】本題考查的是中心對稱圖形的概念,把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.3、ABC【解析】【分析】A.

根據(jù)定理“圓心角的度數(shù)等于它所對的弧的度數(shù)?!笨傻?B.

根據(jù)定理“同圓或等圓中,相等的圓心角所對的弧相等?!笨傻?C.

根據(jù)“垂徑定理”及弦的定義可得.D.

根據(jù)“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中得到的四組量中有一組量相等,則對應的其余各組量也相等?!笨傻?【詳解】由定理“圓心角的度數(shù)等于它所對的弧的度數(shù)?!盇.∵的度數(shù)是∴,故選項A錯誤.B.

由定理“同圓中相等的圓心角所對的弧相等?!保珺選項題干中不是同一個圓,故選項B錯誤.C.

由“垂徑定理:垂直于弦(非直徑)的直徑平分這條弦,并且平分弦所對的兩條弧。沒有過圓心,不是直徑,并且,根據(jù)弦的定義,不是圓O的弦,因此無法判斷,故選項C錯誤.D.

∵∴即由定理“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中有一組量相等,則對應的其余各組量也相等。”所以,故選項D正確.【考點】本題旨在考查圓,圓心角,所對應的圓弧及弦的相關定義及性質(zhì)定理,熟練掌握圓的相關定理是解題的關鍵.4、ACDE【解析】【分析】根據(jù)直徑的性質(zhì),垂徑定理等知識一一判斷即可;【詳解】∵AB是直徑,∴∠ADB=90°,∴AD⊥BD,故A正確;∵C,D是⊙O上的點,∴與不一定相等,∴∠A與∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A與∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC與∠AEC不一定相等,故B選項錯誤;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正確∴∠ABC=∠CBD,即CB平分∠ABD,故C正確,∵AF=DF,AO=OB,∴BD=2OF,故E正確,故選:ACDE.【考點】本題考查直徑的性質(zhì)、垂徑定理、平行線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.5、C【解析】【分析】根據(jù)不在同一條直線上的三個點確定一個圓,已知圓心和直徑所作的圓是唯一的進行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個圓,不符合題意;B、已知直徑能確定一個圓,不符合題意;C、平面上的三個已知點,不能確定一個圓,符合題意;D、已知三角形的三個頂點,能確定一個圓,不符合題意;故選C.【考點】本題考查了確定圓的條件,解題的關鍵是分類討論.三、填空題1、①④##④①【解析】【分析】根據(jù)拋物線的對稱軸,開口方向,與軸的交點位置,即可判斷①,根據(jù)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),即可求得對稱軸,以及當時,,進而可以判斷②③,根據(jù)頂點求得函數(shù)的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),對稱軸為,則,當,,,故②不正確,由函數(shù)圖象以及對稱軸為,可知,當時,隨的增大而增大,故③不正確,對稱軸為,則當時,取得最大值,對于任意實數(shù)m,總有,即,故④正確.故答案為:①④.【考點】本題考查了二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合是解題的關鍵.2、【分析】根據(jù)題中點的坐標可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設點,根據(jù)切線的性質(zhì)及勾股定理可得,由其非負性即可得.【詳解】解:如圖所示:當點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設點,在中,,,∴,在中,,∴,則,當時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質(zhì)及勾股定理的應用,理解題意,作出相應圖形求出解析式是解題關鍵.3、2【解析】【分析】利用二次函數(shù)圖象上點的坐標特征可求出點A,B,C,D的坐標,由點A,D的坐標,利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點E的坐標,再利用二次函數(shù)圖象上點的坐標特征可得出點P,Q的坐標,進而可求出線段PQ的長.【詳解】解:當y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點A的坐標為(﹣2,0);當x=0時,y=﹣x2+x+2=2,∴點C的坐標為(0,2);當y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點D的坐標為(2,2).設直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當x=0時,y=x+1=1,∴點E的坐標為(0,1).當y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點P的坐標為(1﹣,1),點Q的坐標為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點】本題考查了拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,利用二次函數(shù)圖象上點的坐標特征求出點P,Q的坐標是解題的關鍵.4、4或12或【分析】分三種情況討論:當AB=BC時、當AB=AC時、當AC=BC時,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當AB=BC時,BC=2,故BC2=4;如圖2,當AB=AC=2時,過A作AD⊥BC于D,連接OC,∴BD=CD,設OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當AC=BC時,則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應用,熟練掌握性質(zhì)定理是解題的關鍵.5、##0.5【解析】【分析】畫樹狀圖,共有20個等可能的結(jié)果,兩顆球的標號之和不小于4的結(jié)果有10個,再由概率公式求解即可.【詳解】畫樹狀圖如圖:共有20個等可能的結(jié)果,兩顆球的標號之和不小于4的結(jié)果有10個,兩顆球的標號之和不小于4的概率為,故答案為:.【考點】本題考查了列表法與樹狀圖法以及概率公式,正確畫出樹狀圖是解題的關鍵.四、簡答題1、(1)頂點P的坐標為;(2)①6個;②,.【解析】【分析】(1)由拋物線解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),畫出函數(shù)圖象,觀察圖象可得;②分兩種情況求:當a>0時,拋物線定點經(jīng)過(2,-2)時,a=1,拋物線定點經(jīng)過(2,-1)時,a=,則<a≤1;當a<0時,拋物線定點經(jīng)過(2,2)時,a=-1,拋物線定點經(jīng)過(2,1)時,a=-,則-1≤a<-.【詳解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴頂點為(2,-2a);(2)如圖,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6個整數(shù)點;②當a>0時,拋物線定點經(jīng)過(2,-2)時,a=1,拋物線定點經(jīng)過(2,-1)時,,;∴.當時,拋物線頂點經(jīng)過點(2,2)時,;拋物線頂點經(jīng)過點(2,1)時,;∴.∴綜上所述:,.【考點】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)的圖象及性質(zhì)是解題的關鍵.2、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關鍵.五、解答題1、(1)證明見解析(2)【分析】(1)連接OA,根據(jù)已知條件證明OA⊥AE即可解決問題;(2)取CD中點F,連接OF,根據(jù)垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結(jié)果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切線;(2)解:如圖,取CD中點F,連接OF,∴OF⊥CD于點F.∴四邊形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的長是.【點睛】本題考查了切線的判定與性質(zhì),垂徑定理,圓周角定理,勾股定理,解決本題的關鍵是掌握切線的判定與性質(zhì).2、(1);(2)①1;②點C的坐標是【解析】【分析】(1)將兩點分別代入,得,解方程組即可;(2)①根據(jù)AB=4,斜邊上的高為2,Q的橫坐標為1,計算點C的橫坐標為-1,即到y(tǒng)軸的距離為1;②根據(jù)直線PQ的解析式,設點A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代數(shù)式表示點C的坐標,代入拋物線解析式求解即可.【詳解】解:(1)將兩點分別代入,得解得.所以拋物線的解析式是.(2)①如圖2,拋物線的對稱軸是y軸,當點A與點重合時,,作于H.∵是等腰直角三角形,∴和也是等腰直角三角形,∴,∴點C到拋物線的對稱軸的距離等于1.②如圖3,設直線PQ的解析式為y=kx+b,由,得解得∴直線的解析式為,設,∴,所以.所以.將點代入,得.整理,得.因式分解,得.解得,或(與點P重

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論